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Abstract—This paper introduces a search-based approach to
personalized content generation with respect to visual aesthetics.
The approach is based on a two-step adaptation procedure
where (1) the evaluation function that characterizes the content
is adjusted to match the visual aesthetics of users and (2) the
content itself is optimized based on the personalized evaluation
function. To test the efficacy of the approach we design fitness
functions based on universal properties of visual perception,
inspired by psychological and neurobiological research. Using
these visual properties we generate aesthetically pleasing 2D
game spaceships via neuroevolutionary constrained optimization
and evaluate the impact of the designed visual properties on the
generated spaceships. The offline generated spaceships are used
as the initial population of an interactive evolution experiment in
which players are asked to choose spaceships according to their
visual taste: the impact of the various visual properties is adjusted
based on player preferences and new content is generated online
based on the updated computational model of visual aesthetics
of the player. Results are presented which show the potential of
the approach in generating content which is based on subjective
criteria of visual aesthetics.

I. INTRODUCTION

IN most design activities, the creator takes specific aesthetic
preferences (her own or those of e.g. a customer) into

account while creating their piece — be it a work of art,
a household appliance or a component of a computer game.
Their design choices may be constrained by the affordances
of the medium (a newspaper cartoonist has a limited palette of
colors), by the desired function (a table requires a flat surface)
or by the perspective of cost-efficiency (for designs destined
for mass-production). On the other hand, their preferences may
be purely stylistic: the designer may want to elicit a specific
emotion from their poem, may want to embody a specific
art style into their painting, or may want to balance form
and function while compromising neither (as with the case
of computer gadget design). These aesthetic preferences guide
the designer’s pen or the artist’s brush throughout the creative
process; as soon as the creation is complete, it is evaluated
by their peers, their customers and the general public. If the
creator’s preferences match those of their critics, then the
creation is well received; if the creator, however, does not
share the same preferences with the public, then the creation
is shunned and discarded.
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Evolutionary design intends to substitute (or at least assist)
a human creator with a computer program which generates
content: the type of content can be art, engineering schematics,
furniture or computer game elements such as weapons [1],
levels [2] or rules [3]. Just as a human creator, so must the
computer program take into account affordances, constraints
and stylistic preferences while creating such content. In such
evolutionary design projects, programmers de facto insert
their personal preferences into the evolutionary process; as in
traditional art and design, the creator assumes that the inserted
preferences are representative of the preferences of the public
in general. While market research informs human creators of
the public’s wishes, a computer program evolving designs
has the potential of assessing their users’ preferences by
interacting directly with them. To a certain extent, interactive
evolution achieves that in the same way that an art critic
determines if a finished work is good or not. However, it
is much more useful to understand the reasoning behind the
user’s response: what drove them to like a specific design and
discard another? By understanding the underlying causes of
these choices, such a program could guide the creative process
based on the user’s preferences (as opposed to the creator’s).

This paper introduces an approach towards realizing such
a program. Using procedurally generated game content which
is contingent on both its functionality and visual appeal —
in this paper the content is 2D spaceship designs for a
hypothetical space combat game — it aims to establish a range
of personalized visual properties which guide the generative
process. Using these quantifiable visual properties as the
fitness function of a genetic algorithm, the content generator
can optimize game elements with the desired visual patterns
as dictated either by a designer (offline) or a user (online).
This paper focuses on how, by observing the choices of a
user, the algorithm can discern the underlying factors affecting
their choice and focus on those visual properties for generating
future content. Our general approach is unique as: a) we follow
a two-step adaptation procedure for the generation of person-
alized content adjusting both the content generated but also the
computational model that assesses content quality; and b) we
combine neuroevolution with constraint satisfaction in order
to create content which fulfills some minimum requirements
while optimizing aesthetic [4] or functional [5] properties. The
ongoing adjustment of the focus of the generative process is
expected to eventually lead to personalized visual aesthetic
computational models and furthermore to the creation of high-
quality content matching the personal preferences of the user.

This paper builds upon previous work [4] and extends it with
a new representation, a different range of visual properties and
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a more effective method for adapting the aesthetic model. By
enforcing certain desired properties in all generated spaceships
through the representation, many feasibility constraints are
alleviated and optimization becomes more efficient. The new
representation aids visual identification of the generated con-
tent as spaceships, allowing for a better visualization to players
adapting their aesthetic model based on the selection of such
content. Finally, the user experiment presented in this paper
significantly differs from the early prototype [4], ensuring
more interesting choices are presented to the users, a signif-
icantly faster generation of novel content and a more direct
(and visually apparent) adjustment of the aesthetic model to
the participant’s selection. Complementary previous work [5]
has focused on the optimization of a spaceship’s performance
in a space combat game, which can be combined with the
optimization of a spaceship’s visual properties presented in this
paper for an even more inclusive measure of content quality.

The presentation of the paper is as follows: Section II places
the proposed methodology in the context of ongoing and
previous work on evolutionary design and visual perception,
while Section III presents the components of the proposed
constrained optimization algorithm. Section IV describes the
domain-specific methodology followed for the representation
of generated game content, the satisfaction of its constraints,
the visual properties being evaluated and the process of adapt-
ing an aesthetic model to player choices. Section V presents
results of offline (non-interactive) optimization of a sample of
visual properties and an experiment in which different users
adapted their aesthetic model during the online evolution of
new content. Section VI discusses the insights gained from
the study and provides directions for future work; the paper
concludes with Section VII.

II. RELATED WORK

This section places the proposed methodology for the
generation of personalized computational models of visual
aesthetics (and content which is driven by those models) in
the literature. As this methodology builds upon the adaptation
of game content to a specific player’s experience, a short de-
scription of Experience-Driven Procedural Content Generation
framework [6] is provided; moreover, the adaptation of content
based on a player’s selection places it in the domain of online
evolution. Finally, we present studies on visual perception
which inspired the visual properties chosen to be evaluated
and optimized in this paper.

A. Experience-Driven Procedural Content Generation

The game industry has in many cases preferred procedurally
generated to author-created content in order to increase the
unexpectedness or unpredictability of a game (and therefore
increase its replayability value) in games such as Diablo [7]
(for dungeons), Borderlands [8] (for items) or Civilization [9]
(for the world map). In recent years, the procedural generation
of content is also used during the development of a game
to limit development time and cost, with applications like
SpeedTree [10] and WorldMachine [11].

Despite its long history within the game industry, the
procedural generation of game content has only recently
received attention from the academic community. Experience-
Driven Procedural Content Generation (EDPCG) [6] is a
novel approach to procedural content generation geared to-
wards optimizing the experience of the player. EDPCG is
synthesized by four main components: a Player Experience
Modeling (PEM) component, a Content Quality component
(which evaluates the generated content based on the PEM), a
Content Representation and a Content Generator component
which usually follows a search-based PCG method [12]. The
principal novelty of EDPCG over traditional search-based
approaches is the identification of the Player Experience
Model, which can be derived from explicit player reports [13]
(subjective PEM), from physiological signals [14] or other
modalities of player response [15] (objective PEM) or from
player actions within a game environment [1] (gameplay-based
PEM).

B. Interactive Evolution

While many EDPCG projects use an ad-hoc designed fitness
function to assess content quality, others use interaction with
a human to guide evolution. Interactive Evolutionary Com-
putation (IEC) is “the technology in which EC optimizes the
target systems based on subjective human evaluation as fitness
values for system outputs” [16] and is used extensively for
content whose quality is subjective and difficult to quantify.
At its core, IEC requires a human user to select individuals
which will breed to create a new generation. IEC is limited
by the fact that user interest drops as the number of choices
they have to make increases. In order to avoid user fatigue,
most IEC projects find shortcuts for reducing the number of
choices imposed on their users.

Interactive evolution traditionally requires a user to select
(or rate) one or more options among a range of presented
content, with the selected individuals receiving preference
for selection; this method has been predominantly used for
generating graphics [17], [18], [19] or music [20] but also for
game content such as buildings [21] and race tracks [22]. In the
current literature, IEC is used within EDPCG either to provide
an indirect player model based solely on gameplay metrics
(side-stepping user fatigue) [1] or to model a direct mapping
between the content and a desired player experience which
is provided either explicitly (e.g. through self-reports) [23] or
implicitly (e.g. through biofeedback) [24].

C. Universal principles of visual perception

Many EDPCG (and evolutionary art) projects argue that
interactive evolution is a necessity, since purely stylistic or
aesthetic preferences are very difficult to recognize. However,
research in cognitive psychology and neurobiology has estab-
lished certain universal properties of form which are ingrained
in human perception and important factors of visual taste; such
properties determine the visual impact of an object.

In his book Art and Visual Perception [25], cognitive psy-
chologist Rudolf Arnheim observes the psychological impact
of certain art pieces on the viewer by assuming a holistic
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perceptual processing of the scene. Introducing the term
perceptual forces as the psychological and physical forces
that guide the viewers’ attention at specific points and along
specific axes on an object or scene, he attempts to identify the
most important contributors to the creation of these forces:
the simplest of those are balance and shape. For Arnheim, the
main contributors of balance are weight and direction: weight
refers to the pull of the viewer’s attention on specific areas
and is influenced by location (with more importance given
to the image’s center and the horizontal and vertical axis),
while direction guides the viewer’s attention along specific
axes. On the other hand, Arnheim approaches shape in the
context of the minimal visual cues that can accomplish iden-
tification. He attributes the perception of shape to simplicity,
subdivision, similarity and difference. Simplicity is achieved
when structural features of the shape are arranged in an easily
deductible and memorable pattern; such structural features
“can be described by distance and angle” [25]. Subdivision
refers to the human ability to group visual cues in order to
dissect the whole into visually distinct parts. Similarity can
visually group distinct shapes or features into a single unit or
pattern, while difference is perceived as an anomaly and grabs
the viewer’s attention.

From a different scientific field, neuroscientists Ramachan-
dran and Hirstein [26] has also suggested “speculative and
arbitrary” laws of art; these eight universal laws, grounded
mostly on empirical studies of the brain, are: peak shift,
isolation, grouping, contrast, perceptual problem solving, sym-
metry, abhorrence of coincidence and metaphor. Of these
properties of visual perception, which he identifies as common
in all brains and thus resistant to cultural influences, this paper
focuses on symmetry, peak shift and metaphor to identify the
most influential features for spaceship identification.

D. Novelty of this paper

In the context of EDPCG research, the approach described
in this paper introduces an inclusive player experience model
(i.e. aesthetics computational model) which is dynamic as it
is adjusted to the player’s preferences during the interaction.
Moreover, the approach provides an evaluation of visual
quality rooted in theories of human perception, a versatile
model for content representation which allows for a wide
variety of generated shapes, as well as an efficient method for
constrained optimization through the two-population paradigm
described in Section III-B.

While the proposed approach of selecting the most prefer-
able content among a range of presented content fol-
lows the paradigm of interactive evolution projects such as
PicBreeder [17], unlike such projects it does not substitute a
fitness function with a user. Instead of explicitly adjusting the
fitness score of a selected individual, the user can — with
a single selection — affect the way the fitness function is
computed and therefore the fitness score of all individuals.
Figure 1 presents the innovation of the proposed approach
within the search-based PCG [12] framework. The adaptive
aesthetic model presented in this paper provides a direct
mapping between content and visual taste, limits the need of

Fig. 1: The two dominant approaches to search-based proce-
dural content generation (predefined-evaluation and interactive
evolution), and the approach presented in this paper (adaptive
model) which adjusts the fitness function based on user input;
the fitness function in turn ranks content by a personalized
measure of quality.

user input and therefore user fatigue and can estimate expected
player satisfaction in previously unseen content.

While the presented framework is inspired by the Galactic
Arms Race game [1], it is distinct in that it evolves the
spaceships themselves rather than their weapons, controls the
generative process through constraints and proposes an indirect
form of preference modelling. In the context of Smith’s and
Mateas’ “meta-level design problem of sculpting an appropri-
ate artifact design space” [27] which is tackled by automat-
ing the generation of the artifact design space through the
definition of constraints and desired properties, the approach
presented in this paper affords not only the satisfaction of
constraints and optimization of one or more properties, but
automates the interpretation of generated artifacts and the
iterative refinement of the design space model.

Outside the domain of computer game content, many evo-
lutionary art projects share this paper’s motivation of a global
or personalized aesthetic model.Although many such projects
use interactive evolution for the selection of fit content [28],
[17] or predefined evaluation functions which create artifacts
of a specific style [29], [30], [31], a number of researchers
have proposed methodologies with similarities to our presented
approach. Jewelry Art Form Generator [32] implements a
“designer interface” which allows the user to adjust their
desirability of visual properties such as mirror symmetry or
the golden ratio. While our approach uses similar descriptive
terms for identifying and quantifying visual patterns, it allows
the user to define the fitness function implicitly through the
selection of preferred content rather than through a potentially
unintuitive set of adjustable parameters. Baluja et al. [33] on
the other hand use a neural network’s output as a fitness score
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indicative of visual quality; the input of the artificial neural
network (ANN) is the entire image and the ANN is trained
on a set of computer-generated images. The failure of their
approach to generalize (based on the large error in the test
set) was an argument in our approach for the use of pre-
determined fitness functions for certain visual properties and
adjusting their impact based on selected content. Machado and
Cardoso [34] use an Artificial Art Critic (AAC) to evaluate 2D
images from two complexity estimates; the AAC’s evaluation
is used as a fitness score for a content generator. Parameters in
the AAC’s evaluation formula can be adjusted directly by the
user or the user “can indicate an image which he finds suitable
and let the system set the optimimum values by estimating its
complexity” [34]. The adjustment of the aesthetic model based
on selected content has several similarities to our proposed ap-
proach; however, our approach uses a different representation
(2D polygons’ points rather than 2D images’ pixels), different
aesthetic properties and distinguishes between feasible and
infeasible content. Most significantly, the adaptation process of
our approach takes into account the user’s unselected content
and retains information from previous user choices, allowing
for an iterative refinement of the user’s visual taste.

III. NEUROEVOLUTIONARY CONSTRAINED OPTIMIZATION

This section presents the two main components of the
neuroevolutionary constrained optimization algorithm used for
the purposes of this study.

A. CPPN-NEAT

Introduced by Stanley [35], Compositional Pattern Pro-
ducing Networks (CPPNs) are neural networks specifically
designed to represent content with regularities, and which
are capable of being optimized through artificial evolution.
Assuming that development in nature consists of a series
of progressively more localized coordinate frames (where a
coordinate is a “conceptual device for describing an abstract
configuration of any type” [35]), Stanley argues that develop-
ment is analogous to a series of function compositions which
transform the base coordinate frame to increasingly more
localized coordinate frames with each transformation applied.
This sequence of function compositions can be represented as
a connected graph of such functions, with the initial coordinate
frame as input and the most localized coordinate frames as
output.

CPPNs can be optimized via neuroevolution of augment-
ing topologies (NEAT) [36]. NEAT starts evolution with a
uniform population of CPPNs with the simplest topology
(no hidden nodes) and random connection weights. As evo-
lution progresses, more hidden nodes and links are added
to the CPPNs; when a node is first added to the network,
its activation function is selected randomly from a range of
pattern producing functions (such as symmetrical or periodic
functions). Genetic diversity is maintained through speciation,
with individuals competing primarily with members of their
own species, allowing them to optimize their structure without
being overwhelmed by individuals of different species with
more complex (and possibly more optimal) topologies.

B. FI-2Pop

While genetic algorithms have shown great promise in the
domain of function optimization [37], the difficulties they face
in solving constrained numerical optimization problems [38]
has given rise to many different methods for handling such
problems. The Feasible-Infeasible Two-Population (FI-2Pop)
genetic algorithm [39] is a recent approach to constrained
optimization through artificial evolution; its principle being
the maintenance (throughout the execution of the algorithm)
of two populations — one containing only feasible individuals
and the other containing only infeasible. Each population
selects and breeds only among its own members in order
to optimize its fitness function, with each population having
a different evaluation strategy. While the feasible population
conducts its optimization in much the same way as in an
unconstrained problem, the objective function of the infeasible
population shifts the latter towards the boundary of feasi-
ble space, where the optimum solution often lies [38]. The
proximity of infeasible individuals to the boundary of feasible
space increases their chances of producing feasible offspring.
The offspring of both generations are tested for constraint
satisfaction, with infeasible offspring (regardless of whether
their parents were feasible or infeasible) being inserted into
the infeasible population and feasible offspring being inserted
into the feasible population. This migration of offspring from
one population to the other (an indirect form of inter-breeding)
contributes to the variation of both populations; depending on
the size of the feasible set, this migration may be the only
source for feasible individuals.

The algorithm proposed in this paper evolves CPPNs
through NEAT using both a feasible and an infeasible pop-
ulation, yielding a constrained optimization approach through
neuroevolution.

IV. METHODOLOGY

For the purposes of this study, spaceship shapes (and indi-
rectly their thruster and weapon topologies) are being evolved
to satisfy several technical and design-specific constraints as
well as to optimize their visual quality, which is determined
based on various aesthetic principles. The model of visual
quality used to evaluate generated content can be adjusted
based on the spaceships chosen by a user. This allows the
algorithm to adjust its focus to specific visual properties
prevalent in one or more of the user’s chosen shapes.

This section presents the process of the spaceship’s gen-
eration and its evaluation. While this paper focuses on the
evaluation of visual quality, generated spaceships are assumed
to be inserted in a prototype 2D space shooter game consisting
of planets (acting as obstacles) and enemy spaceships (see Fig.
2). Spaceships are expected to be able to function within such
a game (move, shoot, avoid obstacles); “performance” in this
section refers to these functionalities, and assumes a steering
controller based on the spaceship’s physical properties detailed
in Section IV-A. For more information about the prototype
2D gameworld, the spaceship’s intended functionalities, and
the optimization process of the generated spaceships’ perfor-
mance, the reader is referred to earlier work by the authors [5].



IEEE T-CIAIG SPECIAL ISSUE ON COMPUTATIONAL AESTHETICS IN GAMES 5

Fig. 2: A screenshot of the 2D space shooter in which space-
ships will be used. Depicted are the procedurally-generated
spaceship (yellow), an enemy spaceship (red), two planets
acting as obstacles (the two spheres) and a goal area (white)
towards which the test spaceship is moving.

Fig. 3: Activation functions f(x) used by the CPPN’s nodes.

A. Representation

The generated spaceships are encoded as Compositional
Pattern-Producing Networks (CPPNs) [35] which choose their
nodes’ activation functions among six options shown in Fig. 3.
The CPPN receives a sequence of inputs in the form of
2D coordinates (corresponding to 15 equidistant points on
a circle) and returns a sequence of 2D coordinates for the
pattern of the spaceship’s base shape. This “base shape” is
subsequently mirrored along the vertical axis passing by its
midpoint and joined with the original base shape, ensuring that
the resulting spaceship will be symmetrical (see Fig. 4). The
top-most points are assigned weapons aligned to that point’s
normal. The bottom-most points are assigned thrusters aligned
to the vertical axis; any other thruster alignment would yield
inferior spaceship performance. This representation differs
from that presented in previous work [4], [5]: although it
sacrifices representational freedom (with a single type of
weapon and thruster), it increases the chances of feasible
and well-performing individuals while the enforced symmetry
increases the identification of generated results as spaceships.
Given that the generated spaceships are expected to function
(move, shoot) within a prototype 2D space shooter game [5],
the enforced thrusters’ symmetry simplifies the spaceship’s
physics model significantly, providing a much more sensible
movement pattern.

The properties of attached weapons and thrusters (such as

Fig. 4: Step-by-step generation of a spaceship. The input circle
(a) is transformed by the CPPN (b) into a pattern (c) which is
then merged with its reflection (d). The game parameters (e)
determine the properties of the final spaceship (f). Weapons
(W) and thrusters (T) are placed at the top and at the bottom
of the spaceship, respectively.

cost, thruster power, weapon cooldown or projectile damage)
are stored in a collection of game-specific parameters, which
also include constants such as mass per surface unit and
maximum width and height of the spaceship (see (e) in Fig. 4).
Once the spaceship has been generated according to the above
procedure, its physical properties (such as the spaceship’s
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(a) (b) (c) (d)

Fig. 5: Sample spaceships that fail different constraints: the
spaceship in (a) has hull lines that intersect, in (b) it has holes
(which are created during merging of the base shape, shown
in light grey, with its reflection shown in dark grey), in (c)
it has weapons which intersect with the hull and thrusters
which intersect with each other. While the spaceship in (d)
appears plausible, it exceeds the maximum limit imposed to
the spaceship’s speed (due to the small mass and large number
of thrusters). Each constraint’s distance from feasibility is
measured in (a) from the number of hull line intersections,
in (b) from the number of holes, in (c) from the number
of intersections of weapons or thrusters and in (d) from the
difference of the spaceship’s speed and the upper speed limit.

mass, its acceleration and maximum speed) are determined
based on its surface area and attached thrusters.

B. Constraint Satisfaction

Generated spaceships must fulfill a number of requirements
in order to be able to function in a game. Such requirements
may arise from the needs of rendering physics simulations
(such as a non-degenerate polygon and positive mass), from
the need of a spaceship appearing “plausible” to the user
(such as weapons and thrusters that do not intersect with each
other) and from the game design itself (which can impose a
maximum number of weapons or a maximum speed). While
not an exhaustive list, the most important constraints are shown
in Fig. 5 along with sample spaceships which violate them.
The inclusion of constraints elevates the problem of spaceship
design to one of constrained optimization, which is handled
by simultaneously evolving two populations of CPPNs. Using
the Feasible-Infeasible 2-population paradigm [39], CPPNs
encoding spaceships which satisfy all the constraints are
inserted in the feasible population while CPPNs encoding
spaceships which fail one or more constraints are inserted
in the infeasible population. The feasible population uses
NEAT [36] to optimize its members according to a measure of
visual quality presented in Section IV-C, while the infeasible
population uses NEAT to minimize its members’ distance
from a feasible solution. Each failed constraint has its own
distance from feasibility which usually is a scalar value:
Fig. 5 designates the measures used to calculate each of
the sample constraints’ distance from feasibility. The sum of
every constraint’s distance from feasibility constitutes the total
distance from feasibility for a spaceship: if this value is 0 then
the spaceship is feasible. Offspring of either population can
be feasible or infeasible, allowing for a form of interbreeding
which increases the diversity of both populations.

C. Visual Quality

Drawing inspiration from the works of Ramachandran and
Arnheim documented in Section II-C, the presented framework
is able to quantify a number of visual properties by parsing
the polygons of the generated spaceships using the CGAL
library [40]. According to the literature, some of the most
important visual properties of the 2D spaceships are symmetry,
weight as well as its outline. This paper identifies several
significant visual properties of the spaceship’s hull, although
more aesthetic properties have been included in previous
work [41]. Visual quality is assessed solely on the spaceship’s
hull (ignoring color, lighting and other aesthetic properties)
since it has sufficient representational power to generate a large
variety of shapes. Each of the mathematical formulas described
below for quantifying the visual properties follows the format
of µ(x), where x a value derived from parsing the spaceship’s
polygon and µ(x) a membership function which allows for
granularity in the choice of optimal values for variable x.

Symmetry can be measured by reflecting the hull of the
spaceship along an axis passing from its midpoint (see Fig. 6a).
The fitness score for symmetry is computed as:

fsym = µsym

(
A∩
A∪

)
(1)

where A∩ is the surface of the common area in the base and
the reflected shape and A∪ is the surface of the area occupied
by either the base or the reflected shape.

Weight (or weight distribution) can be measured by calcu-
lating the surface of a “focus” part of the spaceship’s hull:
example “focus” parts are displayed in Fig. 6b-6c. The fitness
score for weight is computed as:

fW = µW

(
Ap

A

)
(2)

where Ap is the surface of the “focus” part of the spaceship’s
hull and A is the surface of the entire spaceship’s hull.

Containment builds on the notion of weight, but the “focus”
part of the spaceship’s hull is determined by a more complex
shape acting as a “cookie cutter” (see Fig. 6e). The fitness
score for containment is computed as:

fC = µC

(
Ac

A

)
(3)

where Ac is the surface of the part of the spaceship’s hull
contained within the designated shape.

Simplicity rewards spaceships with simple outlines, whose
hull’s perimeter length is short. The fitness score for contain-
ment is computed as:

fsim = µsim

(
P − Pmin

2Pmin

)
(4)

where P is the hull’s perimeter length and Pmin is the
perimeter of an oval inscribed within the hull’s bounding box
(see Fig. 6f).

Jaggedness evaluates the presence of acute angles in the
spaceship’s outline. The fitness score for containment is com-
puted as:

fJ = µJ

(
PJ

P

)
(5)
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(a) Symmetry along the X
axis (reflected shape shown
with dotted line).

(b) Weight distribution in the
bottom half.

(c) Weight distribution in the
middle third along the X axis.

(d) Weight distribution
in the middle third
along the Y axis.

(e) Containment within
a forward-pointing trian-
gle (red).

(f) Simplicity and the
oval (red) inscribed
within the hull’s
bounding box.

(g) Jaggedness and the
lines (red) forming sharp
angles.

Fig. 6: Visual properties: variable A∩ is the surface of the
common area in the base and the reflected shape (see eq. (1)),
Ap the surface of the “focus” part of the spaceship’s hull (see
eq. (2)), Ac the surface of the part of the spaceship’s hull
contained within the designated shape (see eq. (3)) and Pmin

the perimeter of an oval inscribed within the hull’s bounding
box (see eq. (4)).

where PJ is the length of all lines forming an angle between
20◦ and 60◦ or between 300◦ and 340◦ (lines sharing two such
angles are not calculated twice). Figure 6g illustrates which
lines’ length contribute to PJ .

The individual fitness scores presented above can be used
on their own to optimize a single visual property such as
symmetry or simplicity, or can be aggregated into a weighted
sum representing a more inclusive aesthetic model. By using a
weighted sum as the feasible fitness, the constrained optimizer
can create content with high scores in many different visual
properties. The weighted sum of fitness scores (

∑
i wifi where

fi is the fitness score of a visual property i and wi its
corresponding weight) is identified as aesthetic score (F ) and
is normalized to [0, 1].

D. Adaptive Model of Quality

Using a weighted sum for deriving a comprehensive mea-
sure of content quality allows for the weights of this quality
approximation to be adjusted in a straightforward fashion
based on in-game player choices. Through this weighted sum,
the evolution’s objective function largely subsititutes user input
with a personalized aesthetic model and limits user fatigue.

Following the formula of interactive evolution projects
with explicit user selection (such as PicBreeder [17]), the
experiment presented in this paper is structured into a series
of iterations. In each iteration a number of spaceships are
presented to the user, who selects one of them as the visually
preferable. The goal of the adaptive model is to reward visual
properties with a high fitness score in the selected spaceship
and low fitness scores in the unselected ones while penalizing
visual properties with a low fitness score in the selected
spaceship and high fitness scores in the unselected ones.
Towards that end, the weight of a visual property i when the
player selects spaceship S is updated by:

∆wi = α(fiS − f̄iU ) (6)

where α is a weight update step (0.01 in the experiment
presented in this paper), fiS is the selected spaceship’s fitness
score for visual property i and f̄iU is the average fitness score
for visual property i among the unselected spaceships. Assum-
ing we are adjusting the weight of the selected individual’s
fitness property i, equation 6 follows the key principles of the
Widrow-Hoff [42] weight update rule.

As the interactive evolution experiment presented in this
paper (see Section V-C) introduces the option of selecting no
spaceship, eq. (6) is not directly applicable. In cases where
the user selects no spaceship, the working assumption is
that the aesthetic model used to rank and present content
is completely off-track, but the user has no insight towards
which visual patterns it should strive. The relaxation of the
aesthetic model (by reducing the impact of weights on the final
aesthetic score) will likely result in more “generic” spaceships,
allowing the user a wider range of available visual properties to
choose from. This relaxation is achieved by penalizing visual
properties with a high fitness score in the presented spaceships
if their weights are positive but rewarding them if their weights
are negative. Towards that end, the weight of a visual property
i when the player selects nothing is updated by:

∆wi = −αf̄i
wi

|wi|
(7)

where α is the same weight update step as in eq. (6), f̄i is the
average fitness score for visual property i among all presented
spaceships and wi is the weight of the unadjusted aesthetic
model.

The weights are adjusted until the selected spaceship has
the highest aesthetic score F among those presented or when
the aesthetic score difference between the highest scoring
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spaceship and the selected spaceship starts to increase. Once
this adjustment is complete, an additional set of 100 weight
updates is performed via eq. (6) or eq. (7): this process pro-
vides an additional fitness bias towards the selected spaceship,
and ensures adjustments to the aesthetic model even if the
user selected the highest scoring spaceship or no spaceship at
all. Since the aesthetic score only measures the relative con-
tribution of visual properties’ fitness scores, the final adjusted
weights are divided by

∑
i |wi| resulting in normalized weight

values.

V. RESULTS

This section presents the results of the neuroevolutionary
constrained optimization algorithm when one or more sample
visual properties are targeted. Experiments in Sections V-A
and V-B do not allow for player interaction and use lengthy
offline optimization runs using a predefined objective func-
tion. In these offline experiments the optimization behavior
of CPPN-NEAT is compared with other neuroevolutionary
approaches and subsequently it is further analyzed including
sample optimized spaceships. While Section V-A demonstrates
the types of spaceships favored by each of the individual visual
properties, Section V-B introduces a few sample complex
aesthetic models, illustrating how conflicting visual properties
can hinder the algorithm’s optimization progress. The studies
conclude with a user experiment in online content generation
using a player-dependent aesthetic model which gets adapted
through human-computer interaction.

For experiments in this paper, seven different visual prop-
erties are selected based on the heuristics provided in Section
IV-C:
f1 evaluates symmetry along the horizontal (X) axis

(see Fig. 6a), with µW in eq. (1) calculated from
µsym(x) = xn.

f2 evaluates weight in the bottom half (see Fig. 6b),
with µW in eq. (2) calculated from µW (x) =
min{ 5x4 , 1}

n.
f3 evaluates weight in the middle third along the X axis

(see Fig. 6c), with µW in eq. (2) calculated from
µW (x) = min{ 5x4 , 1}

n.
f4 evaluates weight in the middle third along the Y axis

(see Fig. 6d), with µW in eq. (2) calculated from
µW (x) = min{ 5x4 , 1}

n.
f5 evaluates containment within a forward-pointing tri-

angle (see Fig. 6e) with µC(x) in eq. (3) calculated
from µC(x) = xn.

f6 evaluates simplicity, with µsim in eq. (4) calculated
from µsim(x) = min{1,max{x, 0}}n.

f7 evaluates jaggedness, with µJ in eq. (5) calculated
from µJ(x) = x.

In the above heuristics of the seven visual properties, n is
a parameter which puts pressure on highly fit content: n = 3
in all experiments presented in this paper. One exception is
f7, which does not include n in its membership function µJ ;
preliminary tests illustrated that f7 has very low scores for
most spaceship shapes (as will be shown in following section)
without the additional pressure from n.

(a) (b) (c)

Fig. 7: Ad-hoc baseline solutions used for comparative pur-
poses against our approach: a triangle (a), a square (b) and a
circle (c). Blue elements depict thrusters while red elements
depict weapons.

TABLE I: Fitness scores of the three baseline solutions across
all seven visual properties examined.

f1 f2 f3 f4 f5 f6 f7

Triangle 0.333 0.824 0.072 0.335 1.000 0.991 0.380
Circle 1.0 0.244 0.072 0.072 0.125 0.963 0.0
Square 1.0 0.244 0.140 0.147 0.167 0.993 0.0

In order to provide a set of baseline values for comparison
with optimized spaceships’ fitness scores, some obvious solu-
tions to spaceship design are shown in Fig. 7 and their fitness
scores for all seven visual properties are displayed in Table I.

A. Offline Optimization of a Single Visual Property

Each of the visual properties (f1 to f7) can be used on
their own as a fitness function for feasible individuals in
the constrained optimization algorithm. This section compares
the optimization progress for a single visual property and
shows that CPPN-NEAT affords a faster convergence over
a number of neuroevolutionary techniques that also use the
two-population approach. Subsequently it demonstrates the
optimization process with CPPN-NEAT of the seven presented
visual properties (f1 to f7).

1) Comparison among neuroevolutionary approaches: To
evaluate the efficiency of our CPPN-NEAT approach, we
compare it against a number of alternative neuroevolutionary
mechanisms, all of which are using the FI-2Pop paradigm
for constrained optimization and which, unlike CPPN-NEAT,
employ only the hyperbolic tangent as their neurons’ activation
function. The alternative mechanisms are as follows:
• ANN-NEAT: this mechanism begins with minimal topol-

ogy networks and augments their topology.
• EANN1: this mechanism evolves the weights (without

altering the topology) of a fully connected feed-forward
network with no hidden nodes.

• EANN2: this mechanism evolves the weights (without
altering the topology) of a fully connected feed-forward
network with two hidden layers of four nodes each.

• EANN3: this mechanism evolves the weights (without
altering the topology) of a fully connected feed-forward
network with two hidden layers of ten nodes each. The
choice for the EANN3 topology came from an observa-
tion of the final evolved CPPNs, which had 19 hidden
nodes on average.

The optimization progress of a single visual property (for
space considerations, we are using f2 as a sample fitness score)
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Fig. 8: Comparison of the optimization of the maximum fitness
(using f2) among different neuroevolutionary approaches.

for the different neuroevolutionary approaches is presented
in Fig. 8. Similar results were obtained for all individual
fitness scores examined. The results are gathered for the 5
different stochastic optimization mechanisms described above
on a population of 250 individuals; statistics are calculated
from 10 independent runs of the algorithms. The CPPN-
NEAT approach obtains a significantly higher maximum fit-
ness compared to all other approaches, except when compared
with EANN3 after 100 generations for which the p value
equals 0.18. Significance is tested through standard t-tests
(significance is 5% in this paper) at 10 generations, 50
generations and 100 generation as a representative sample
of early, intermediate and prolonged optimization. Networks
with EANN3 topology are large enough to represent highly
fit content, but the large number of parameters that their
size entails makes their optimization slower compared to
the augmenting topology approach of CPPN-NEAT. Of the
other approaches, larger ANNs eventually discover fit content,
ANN-NEAT suffers from unpredictable behavior (as indicated
by the large standard deviation) while the minimal topology
networks — due to their limited representational power —
are unable to discover fit content even after 100 generations.
Results obtained show the superiority of CPPN-NEAT for the
problem examined as the mechanism demonstrates rapid and
efficient design of highly fit content.

2) Generating content via CPPN-NEAT: Table II presents
the fitness scores of the best feasible individuals at the begin-
ning and the end of a constrained optimization process (after
100 generations), with a population of 250 individuals. The
means and standard deviations are calculated from 10 indepen-
dent runs. The first feasible individual in the population is used
in the calculation of initial scores regardless of the generation
it occurred. Fig. 10 presents the best final individuals among
the 10 different runs, for each visual property. Fig. 9 illustrates
the progress of the different fitnesses; combined with the
information from Table II, it is clear that the visual properties
of symmetry and simplicity (f1 and f6, respectively) have high
scores even with simple networks. Because the points used as
input to the CPPN are on a circle which has high scores in
symmetry and simplicity (see Table I), the resulting spaceships
— especially with simple networks which only apply subtle
transformations to the initial coordinate frame — are more

TABLE II: Fitness of the best individual at the beginning and
the end of constrained optimization of a single visual property
across 10 independent runs.

First feasible After 100 gen.
Mean StDev Mean StDev Max

f1 0.9503 0.0243 0.9972 0.0043 1.0
f2 0.2619 0.0098 1.0 0.0 1.0
f3 0.2220 0.0887 1.0 0.0 1.0
f4 0.1503 0.0654 1.0 0.0 1.0
f5 0.2842 0.0515 0.9364 0.0313 0.9879
f6 0.9844 0.0033 0.9954 0.0004 0.9958
f7 0.0995 0.0528 0.9929 0.0139 1.0

Fig. 9: Progress of the maximum fitness score in each popula-
tion, during the optimization of a single aesthetic property
(across 10 independent runs). The error bars designate the
standard deviation among the different runs.

likely to be symmetrical (f1) and very unlikely to have an
“unbalanced” weight distribution (f2, f3 or f4).

B. Offline Optimization of Multiple Visual Properties

While the optimization of a single visual property leads
to highly fit content, it is only through the combination of
different visual patterns that a meaningful spaceship shape can
be identified. For space considerations, this section presents
three sample combinations of the fitness scores f1 to f7
aggregated as a weighted sum with positive (1) or negative (-
1) weights. The aesthetic combinations presented in this paper
are identified as:
• FA1

= f2 − f6
• FA2

= f2 + f4 + f5 − f6
• FA3 = f1 + f2 + f3 + f4 + f5 + f6 + f7

The combinations of visual patterns were chosen in order to
showcase the effects of genetic search in increasingly complex
data: from the aggregation of two fitness scores in FA1

to
that of all fitness scores in FA3 , the impact of searching
the optima of many different (and possibly conflicting) visual
patterns will become apparent below. The selection of aesthetic
properties (and their weights) for FA1

and FA2
was made
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f1 = 1.0
(horizontal
symmetry)

f2 = 1.0
(weight in the
bottom)

f3 = 1.0
(weight in the
middle along X)

f4 = 1.0
(weight in the
middle along Y)

f5 = 0.988
(containment
in a triangle)

f6 = 0.996
(simplicity)

f7 = 1.0
(jaggedness)

Fig. 10: Best individuals optimized for a single aesthetic
property (across 10 independent runs).

after preliminary tests demonstrated that generated spaceships
were more appealing when the simplicity aesthetic (f6) was
minimized.

1) Comparison among neuroevolutionary approaches: The
efficiency of CPPN-NEAT is evaluated against four alternative
neuroevolutionary methods using FA1

, FA2
and FA3

as the
objective functions; the optimization progress for these three
aesthetic models is illustrated in Fig. 11. Results are collected
for the five different neuroevolutionary mechanisms described
in Section V-A, on a population of 250 individuals and the
statistics are calculated from 10 independent runs.

For FA1
, the CPPN-NEAT approach consistently finds the

best possible individual within 100 generations; the CPPN-
NEAT approach also has a significantly higher maximum
fitness from all other approaches at 10, 50 and 100 generations,
except when compared with EANN3 after 10 generations
for which p = 0.06. For FA2

, the CPPN-NEAT approach
achieves a significantly higher maximum fitness compared to
the maximum fitness of all other approaches at 10, 50 and
100 generations, except when compared with EANN3 after
10 generations for which p = 0.35. For FA3 , all approaches
have a very similar optimization progress throughout the
course of evolution; only EANN1 has a much slower progress
since its simple topology fails to generate intricate patterns
in its results. Excluding EANN1, the differences between the
maximum fitnesses for the other approaches are — save few
exceptions — not statistically significant at 10, 50 and 100
generations. The key reason for this behavior appears to be
the large number of (often conflicting) visual properties being
combined; this problem will be discussed in the next section.

Observing the behavior of the different approaches in
Fig. 11, the same conclusions as in Section V-A hold true.
ANN-NEAT, however, shows an optimization behavior compa-
rable to that of larger networks such as EANN2 and EANN3. It
is unclear if the chosen aesthetic models suit the ANN-NEAT
approach or whether the chosen preset networks are unable
to represent highly fit content. Minimal topology networks

TABLE III: Fitness of the best individual at the beginning
and the end of constrained optimization of multiple visual
properties across 10 independent runs.

First feasible After 100 gen.
Mean StDev Mean StDev Max

FA1 0.3167 0.0973 1.0 0.0 1.0
FA2

0.2756 0.0595 0.8100 0.1184 0.9786
FA3

0.3629 0.0069 0.5403 0.0483 0.6131

(EANN1) perform poorly, since their simple topology does not
allow them to represent shapes with complex patterns. Overall,
an important observation is the increasingly unpredictable
behavior of neuroevolutionary approaches as the number of
aggregated visual properties increases.

2) Generating content via CPPN-NEAT: The results of the
optimization process for the aesthetic scores FA1

, FA2
and

FA3
for 100 generations on a population of 250 individuals

are shown in Table III collected from 10 individual runs. The
progress of the best individual for the most successful run is
presented graphically in Fig. 12a (for FA1 ), Fig. 12b (for FA2 )
and Fig. 12c (for FA3 ). Under each figure, the best individuals’
phenotypes are shown on a 20 generation interval.

Results show an overall increase of the aesthetic score from
its initial values; however, as the combined visual properties
increase, so does the unpredictability of results. While opti-
mizing a single property had a small standard deviation (see
Table II), this deviation increases for two visual properties
and moreso for four visual properties (see Table III). While
Figures 12a and 12b show that all visual properties reach
a high fitness score, in less successful runs certain visual
properties dominated others. For FA2 in particular, the final
best individual often lacked a significantly positive score for
the f4 component.

For the sum of all visual properties (FA3
), constrained

neuroevolution fails to find a shape that maximizes the scores
of all visual properties. Fig. 12c illustrates that even for the
most successful run some visual properties (such as f1, f2
and f3) have a low score while only f4 has the maximum
score in the final best individual; in less successful runs,
some properties (primarily f1 and f3) have no score in the
final best individual at all. It should be noted here that this
behaviour is not only due to the failures of the aggregated
approach at handling multi-objective evolution: the choice of
visual properties being combined also affects the optimization
progress. A shape cannot be at the same time symmetric along
the X axis (f1) as well as have its weight concentrated at the
bottom (f2) — the comparison between f1 and f2 of the square
and the triangle in Table I illustrates the disparity. While a
shape can in theory have its weight concentrated both in the
middle third along the Y axis (f3) and in the middle third
along the X axis (f4), such shapes are a very small subset of
the optimal shapes either for f3 or f4, and therefore difficult to
discover. Finally, a shape which could at least in part combine
the intricate visual properties defined (not least of which is
the requirement for having sharp edges as per f7) would be
impossible to have a simple outline (f6). It is therefore, in
part, the fault of the designer for requiring the simultaneous
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(a) Optimization using FA1
as the aesthetic model. (b) Optimization using FA2

as the aesthetic model. (c) Optimization using FA3
as the aesthetic model.

Fig. 11: Comparison of the optimization of the maximum fitness among different neuroevolutionary approaches.

(a) Optimization using FA1 as the aesthetic model,
which evaluates weight in the bottom (f2) and
complexity (−f6 or negative simplicity).

(b) Optimization using FA2 as the aesthetic model,
which evaluates weight in the bottom (f4) and in
the middle third along Y (f4), containment within
triangle (f5) and complexity (−f6 or negative sim-
plicity).

(c) Optimization using FA3 as the aesthetic model,
which sums all visual properties (f1 to f7).

Fig. 12: Stacked area plot of the best individual’s progress for different aesthetic models of varying complexity. Under each
figure, the best individuals’ phenotypes are shown on a 20 generation interval. For legibility purposes, in plots 12a and 12b
the progress of f6 due to its negative weight is displayed as 1− f6. The score of the baseline solutions are also included for
comparison.

optimization of properties which are not compatible with each
other. This could be alleviated by a more careful selection of
visual properties and their weights (as was done for FA2 ),
or by adapting these weights based on example shapes that
epitomize the visual effect required. This is the rationale
behind the adaptive model of visual aesthetics detailed in
Section IV-D, an experiment of which will be discussed in
the following section.

C. Online Adaptation of the Aesthetic Model

In order to evaluate the potential of interactive adaptation
of the aesthetic model, a simple user experiment was con-
ducted. This section presents the testbed used, the participants
involved, the experimental process and a sample of the results
gathered.

1) Setup and Participants: The online adaptation exper-
iment took place in a controlled environment, on a single
laptop computer: only one participant took the test at a time
and, where possible, isolation of the participant from external
distractions was preferred. A questionnaire given before the
experiment included a brief description of the experiment’s
goal and a guide to running it.

In total 20 users participated in the test. Participants (15%
female) were primarily selected from students of a game stud-
ies program. For that reason, the vast majority of participants
play computer games, with 35% playing 20 hours or more
weekly and 45% playing 5-10 hours weekly. Ages in the tested
group ranged from 22 to 36 and nationalities included Greek
(20%), Italian (15%), German (15%) and Danish (15%).

2) Method: Every participant was presented with the same
eight spaceships (Fig. 13), loaded from a collection of space-
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Fig. 13: Initial shapes presented to all participants, ordered
from fittest (top left) to least fit (bottom right) as evaluated by
the initial aesthetic model.

ships optimized offline for different visual properties and com-
binations thereof. This collection, consisting of 46 individuals
(all of which are feasible), was the initial population from
which new spaceships were evolved based on the player-
adapted model of visual aesthetics. The aesthetic model was
represented as a weighted sum of the seven visual properties
(f1 to f7); the initial model’s weight values were set to 1 for
all participants. As presented in Section IV-D, the experiment
is essentially a series of iterations: in each iteration a number
of spaceships (up to eight) are chosen from the current feasible
population and presented to the user. The presented individuals
include the highest scoring spaceship and the lowest scoring
spaceship, with remaining spaceships as evenly distributed as
possible according to their aesthetic score. When there are not
enough feasible individuals to provide a suitably diverse set,
then the number of presented spaceships is smaller than eight.
After the player selects a spaceship among the ones presented
(or no spaceship at all), the weights of the aesthetic model are
adjusted according to the process presented in Section IV-D.
With the new aesthetic model, the current population evolves
for 5 generations in order to optimize the re-weighted visual
properties, and a new iteration begins with the presentation of
a new set of spaceships among those evolved.

Figure 14 is a visualization of a participant’s iteration, and
illustrates the process of adapting the aesthetic model. The
difference in the fitness scores of visual properties between
the selected spaceship and the mean of the unselected ones
heavily depends on the types of spaceships presented. In cases
where the spaceships displayed have several similar visual
properties, the player’s selection greatly increases or decreases
the weights of those visual properties that are different among
the presented content. This allows the model to “focus” on
one or two visual properties at a time, optimizing those
on a population already optimized for previously prominent
visual properties. The evolved content and the aesthetic model
therefore complement each other; this may however cause
stagnation if the population does not have very visually diverse
results. The option to select nothing is designed to adjust the
aesthetic model in a way that will allow diversity to be favored
during the subsequent content evolution.

3) Results: The adaptation of the aesthetic model depends
heavily both on the content presented and on the player’s

Fig. 14: An illustration of the adaptive modelling procedure:
the weight update of participant No.5 for the 2nd iteration.
The presented spaceships and their initial fitness scores are
displayed in (a) with the selected one inside a black outline.
The difference between the selected spaceship and the mean
of the unselected ones for each visual property is visible in
(b). Based on this difference, the aesthetic model is adjusted
until the selected spaceship has the highest fitness; the change
in the weights is illustrated in (c). The fitness scores of the
spaceships in (a), given the new aesthetic model, are shown
in (d).

preferences; this makes a conclusive presentation of all partic-
ipants’ aesthetic models superfluous. Due to space constraints,
Fig. 15 shows the aesthetic model’s progress for the first 10
iterations of only one participant. The participant’s selected
spaceship as well as the aesthetic model’s expected best
spaceship are also illustrated over each iteration. The 1st
iteration illustrates the initial aesthetic model provided to all
participants (where all weight values equal 1). The shift from
the 3rd to the 4th iteration showcases the effect of selecting no
spaceship: the aesthetic model shifts most of its weights from
positive in the 3rd iteration to negative in the 4th iteration,
while the expected best spaceship in the 4th iteration is very
different from that of the 3rd iteration. After the 5th iteration,
the user’s preferences become more consistent and more in
tune with the expected best spaceships; this results in smoother
changes in the aesthetic model, with the lack of symmetry
(−f1) being consistently the most significant contributor to
the aesthetic score while simplicity (f6) and jaggedness (f7)
alternate between positive and negative weights between iter-
ations.
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Fig. 15: The aesthetic model’s progress over the iterations for a sample participant (participant No.9); the aesthetic model is
represented as a normalized vector of contributing visual properties, with negative weights being displayed under the Y axis.
The model’s expected best spaceship and the participant’s selected spaceship are also included for each iteration — the effect
of the selection is visible in the next iteration’s aesthetic model.

To evaluate the effects of the aesthetic model’s adaptation,
the Kendall rank correlation coefficient (Kendall’s τ ) will be
used to measure the association between the initial presented
spaceships (Fig. 13) and the same spaceships evaluated with
each user’s aesthetic model after 10 iterations (in the same
order). The initial spaceships are used for reference — being
the only content common among all participants — while
Kendall’s τ coefficient provides a measure of similarity of the
fitness scores’ orderings [43]. Its value ranges from 1 (if the
orderings are identical) to −1 (if one ordering is the reverse of
the other). Figure 16 displays each participant’s τ coefficient
values, accompanied with the final aesthetic model’s best
spaceship among those evolved after 10 iterations. Through the
τ values we observe both substantial deviations from the initial
ordering but also rather large differences among participants.
Unexpectedly these results showcase the difference in visual
taste and aesthetic values across different users, but also that
very different expected best spaceships have similar τ values.
The adaptation of the aesthetic score greatly depends on
the presented content as well as previous selections (which
cannot be illustrated due to space constraints); however, some
observations can still be made from Fig. 16. Overall, many of
the participants’ models favored more complex shapes: such
shapes usually have a negative τ score which corresponds
to a large degree of reordering of the initial spaceships. The
reordering is necessary since the initial aesthetic model favors

simplicity (f6 has an initial weight of 1) while the final
aesthetic models usually do not — save for participants No. 10
and 11. On the other hand, a relatively simple spaceship such
as the one for participant No. 5 lacks horizontal symmetry
(f1), weight concentration in the bottom (f2) and weight
concentration in the middle along the X axis (f3): since all of
these visual properties initially have a positive weight, in order
for such a spaceship to be the best then the aesthetic model
must have changed significantly, which is reflected in the
participant’s negative τ score. There are many subtle reasons
why the adapted aesthetic models of different participants
evaluate the illustrated spaceships as the best, many of which
are hidden in previous selections or the successes and failures
of previous evolution of new content. An overall conclusion
however is that in most cases the “default” aesthetic model
provided by the designer was significantly changed by the
participants, resulting in a much more diverse and interesting
variety of content.

Data pertaining to the online evolution of new content is
documented in Table IV. The increase of the maximum fitness
score during the short evolutionary sprints is small on average
(0.037), with the average fitness score faring even worse.
While the adaptation process of the aesthetic model is capable
of finding the most appropriate content in the population and at
reordering it to the user’s preference, the optimization process
rarely creates much better content within a single iteration. The



IEEE T-CIAIG SPECIAL ISSUE ON COMPUTATIONAL AESTHETICS IN GAMES 14

TABLE IV: Online evolution statistics collected from the user
test. Mean values presented are calculated across all partici-
pants; standard deviation values are included in parentheses.

Presented spaceships’ fitness range 0.49 (0.15)
Feasible population size 17.41 (4.25)
Improvement of max F within an iteration 0.037 (0.043)
Improvement of average F within an iteration 0.049 (0.096)

fact that optimization only runs for 5 generations at a time is
one reason for these misgivings; another reason is the fact that
from the 46 feasible individuals in the initial population, only
17.41 on average remain feasible on the ensuing evolutionary
runs. The high dimensionality (given the small population) of
the aesthetic score is the most significant factor for the slow
optimization. Even in offline experiments presented in Sec-
tion V-B with much larger populations, changes within 10 or
20 generations for an all-inclusive aesthetic model (Fig. 12c)
are not much higher than the ones indicated here. The weights
of the aesthetic models in the current experiment are different
and possibly better suited for guiding evolution, but high-
dimensional data always adversely affect the optimization
progress. Although not reflected in Table IV, an inspection
of the generated or presented content shows that the short
evolutionary sprints between each iteration did in fact create
novel (if not always better) content. Another insight gained
from inspecting the content is the fact that the population
tends to lose its diversity in later iterations due to convergence,
especially if the user makes “consistent” choices. The result is
a set of similar spaceships being presented to the user (such as
the first four spaceships in Fig. 14) which necessitates a rather
uninteresting choice on their part. Selecting no spaceship at
all often mitigated such situations, but its effect also depends
on the heterogeneity of the population and its ability to create
very different content within the few generations it evolves. As
a whole, the large fitness difference between the best and the
worst presented spaceship (identified as fitness range, which
was 0.49 on average) denotes that in most cases the user was
presented with suitably diverse spaceships.

VI. DISCUSSION

The adaptation of the aesthetic model based on the visual
properties’ score difference between selected and mean of
unselected individuals had quite satisfactory results. However,
it could be claimed that some aspects of the method are
rather arbitrary, as some design choices were done based on
experimentation rather than principle. For example, it could
be that instead of a linear model, a non-linear measure of
“difference” could better evaluate the difference between very
similar spaceships (ignoring outliers) or focus on the differ-
ences between the selected spaceship and the most different
unselected ones. Additionally, the adjustment of the aesthetic
model when no spaceship is selected — combined with the
arbitrary choice of 100 additional weight updates regardless of
player choice — is largely based on intuition and preliminary
tests. Future work needs to explore alternatives to these design
choices, and document the benefits and drawbacks of each
adjustment strategy empirically.

The presented adaptive aesthetic model consists of seven
different visual properties. The addition of more visual prop-
erties would add granularity to the aesthetic model and help it
identify many more factors behind a player’s choice. However,
optimizing a more complex aesthetic model would suffer from
the curse of dimensionality [44] which, in part, also affects
the content optimization progress in the presented user test.
Previous user tests [4] tackled the problem by optimizing the
two most “different” visual properties during each iteration.
It is important to note that our suggested approach requires
fitness functions which must be carefully designed by the
creator. While the aesthetic model can adjust the impact of
each of these fitness functions, the creator still assumes that the
inserted visual properties are inclusive and representative of
those of the public. Future work will explore the possibilities
of using principal component analysis to identify wanted or
unwanted patterns among the presented spaceships.

In addition to the types of visual properties being optimized
(and the method they are computed), the core innovation of
this paper over previous work [4] is the shift in representation.
The enforced horizontal symmetry, as well as the attachment of
weapons and thrusters to the top and bottom of the spaceship
respectively, considerably helped users identify the generated
content as spaceships. Unlike previous user tests, participants
had no problem identifying the presented content as a space-
ship and often went as far as visualizing its potential combat
tactics or in-game uses. In cases where in-game performance
is being optimized, the shift in representation is expected to
significantly increase both the chances of individuals’ feasibil-
ity and their fitness compared to previous approaches [5] —
such implications will be explored in future work.

However, despite the changes in representation, some of the
final generated spaceships shown in Section V do not appear
as appealing as they could potentially be. We believe that this
is chiefly due to that the spaceship hulls are represented as
2D polygons and rendered directly as such when presented
to the user. The simplicity of the 2D polygon allows for
the computation of various aesthetic measures with a small
computational overhead and limits the number of constraints
that need to be satisfied. But this simplicity comes at a price,
since the final generated spaceships also appear plain; should
the same results be rendered differently (without changing
the underlying optimization strategy), the response from the
players would likely improve. Future work will explore the
possibilities of applying a procedurally generated texture with
additional details over the generated polygon or reconstruct a
3D model using the 2D polygon as the base shape (akin to a
slice image). Fig. 17 demonstrates how a generated spaceship
can be rendered in a different fashion (in 2D or 3D) in order
to improve its appearance.

Still, the result quality could conceivably be improved
through further development of both the evaluation function
and the representation, the two key considerations for search-
based PCG [12]. Regarding the evaluation function, an unbal-
anced weighting of aesthetics can easily lead to less than stellar
results; for example, optimizing for the simplicity aesthetic
often results in rectangular or oval spaceships which are
hardly visually interesting. Given that evolutionary algorithms
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Fig. 16: Kendall’s τ coefficient between the initial presented spaceships and the same spaceships evaluated with each
participant’s aesthetic model after 10 iterations. The final aesthetic model’s best spaceship among those evolved after 10
iterations is also included for each participant.

(a) Base shape (b) 2D interpreta-
tion

(c) 3D interpretation

Fig. 17: Artistic interpretations of spaceships optimized
through the algorithm. The base shape (a) is the best spaceship
optimized for f5 from Fig. 10.

often exploit any shortcoming of the fitness function, all of
the fitness functions which quantify different visual patterns
may be responsible for certain spaceships’ appearance. Future
work should refine these evaluation strategies to limit their
shortcomings.

The content representation affords several crucial design
decisions with a strong impact on the possibility of find-
ing good and diverse spaceships; core considerations include
dimensionality, locality, completeness, and directness [12].
This work has used CPPNs as representation for spaceship
hulls. Several other representations were considered, including
shape grammars [30], turtle graphics [45] and combinations of
primitive shapes [46]. However, based on previous experience
shape grammars and turtle graphics were considered to have
lower locality than CPPNs (small changes to the genotype
are likely to result in large and unpredictable changes to the
genotype and therefore to fitness), and shape grammars and
combinations of primitive shapes were considered to have
lower completeness (the search space comprises a smaller part
of the space of all interesting spaceship hulls). An example
of the superior locality of CPPNs is their ability to retain
their underlying visual patterns while adding detail through

the addition of new nodes — this is particularly useful for
the iterative adjustment of both the generated content and the
aesthetic model which evaluates them. A final, not insignif-
icant advantage of CPPNs is that it has limitless resolution
(this property is shared with fractals such as the Mandelbrot
set, which however have abysmal locality and completeness
properties for most types of content). It is of course possible
and plausible that some hitherto unexplored representation
(perhaps a variation on those presented previously) will prove
to be superior to CPPNs in future work.

It should be pointed out that settling on CPPNs does
not mean that there are no design decisions left for the
representation. In particular the choice of activation functions
for the CPPNs directly define the search space and therefore
indirectly the spaceships’ appearance; future work could ex-
plore alternative activation functions which may yield more
visually interesting results.

The framework and algorithm proposed is applicable be-
yond the scope of spaceship design. The visual properties
presented in this paper can be applied to any 2D game element,
while 3D game content can also be generated and evaluated
with small changes to the representation and the methods for
calculating the visual properties’ fitness scores. Additionally,
the evaluation of content quality can be used as an authoring
tool in game development: while the neuroevolutionary con-
strained optimization of multiple visual properties certainly
has room for improvement, the adaptive aesthetic model in
the form of a weighted sum can also be useful for evaluating
existing content. This aesthetic model can select the most
suitable game content for a particular player’s visual taste
from a collection of pre-generated or procedurally generated
content. The player’s choices can be used to adapt the aesthetic
model much like the experiment presented in this paper and
without the need for online evolution of new content. The
fact that such a personalized aesthetic model can be combined
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with the evaluation of competencies in game-specific tasks [5],
allows for a personalized experience where the presented
content is to the player’s taste and its functionalities are
tailored to their playing style or challenge level.

VII. CONCLUSION

This paper introduces a generic two-step adaptation frame-
work for the generation of personalized content with regards
to a user’s visual taste. In the proposed adaptation scheme
the content is not only adapted to maximize a set of fitness
functions, but the fitness functions that assess the visual quality
of the content are themselves adjusted to match the aesthetic
preferences of users.

To showcase the effectiveness of the proposed framework
the paper presents a constrained search-based procedural con-
tent generation method to optimize the shape of spaceships.
The fitness dimensions are based on visual properties deemed
significant and “universal” by studies on human perception. By
ensuring that candidate spaceships meet constraints imposed
by the game engine and a human designer, the content genera-
tor operates in a much smaller and more relevant search space.
The visual properties presented in this paper are only a sample
of possible quantifiable aesthetic and functional characteristics,
some of which have been introduced in previous work [41],
pertaining to size, cost, or weapon- and thruster-specific prop-
erties. These aesthetic evaluations can be used in conjunction
with evaluations of the generated content’s performance in
game-specific tasks, as presented in previous work [5], to
create both functional and visually appealing spaceships.

Experiments in the optimization of a single visual property
have as a whole shown promising results, especially compared
to similar neuroevolutionary approaches. On the other hand,
the aggregation of multiple visual properties in a single fitness
score (as a weighted sum) is not guaranteed to generate content
with all the required visual patterns since results heavily
depend on the type of visual properties being combined.

The approach proposed and methods presented in this paper
could very conceivably be applied to other content generation
problems where human evaluation is in short supply or expen-
sive.
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