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Affect in Spatial Navigation: A Study of Rooms
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Abstract—How do spaces make us feel? What is the perceived emotional impact of built form? This study proposes a framework to
identify and model the effects that our perceived environment can have by taking into consideration illumination and structural form
while acknowledging its temporal dimension. To study this, we recruited 100 participants via a crowd-sourcing platform in order to
annotate their perceived arousal or pleasure shifts while watching videos depicting spatial navigation in first person view. Participants’
annotations were recorded as time-continuous unbounded traces, allowing us to extract ordinal labels about how their arousal or
pleasure fluctuated as the camera moved between different rooms. Given the subjective nature of the task and the noisy signals from
real-time annotation, a number of processing steps are applied in order to convert the data into ordinal relationships between affect
metrics in different rooms. Experiments with random forests and other classifiers show that, with the right treatment and data cleanup,
simple interior design features can be adequate predictors of human arousal and pleasure changes over time. The dataset is made
available in order to prompt exploration of additional modalities as input and ground truth extraction.

Index Terms—Affective Computing, Virtual Spaces, Lighting, Affect Annotation, Ordinal Modeling, Random Forests
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1 INTRODUCTION

S PACES and their surrounding structures can have a
strong impact on occupants residing within them or

just passing through them. Practitioners and researchers
of architectural design have long strived to define the
psychological impact of the built space [1], [2], [3], [4].
These endeavors have resulted in a plethora of models
that map the emotions involved in the process of decoding
our surroundings. These models have been revisited and
reworked extensively in the post-modern era, when our
built tendencies shifted from the functional approaches to
more humanistic and environmental design methodologies
[5], [6]. These design approaches emphasize human comfort
in interior environments, and have shifted our interest to the
emotional and well-being capabilities of the built space [7],
[8], [9].

The quantitative study of the effect that architectural
design has on humans and its potential to deliver the in-
tended experiences is not trivial. Visual perception is inher-
ently a subjective matter and the affective responses to our
environments are subject to personal taste, values, cultural
influences, experiences and interactions. This emphasis on
the subject is commonly referred as “the internalist’s view”
[10], where the context of the experience plays a more
important role than objective facts and descriptors regarding
the surrounding environment. To mitigate this subjectivity
inherent in all research fields associated with human factors
and human behavior, large samples of the population are
typically required. In the field of architecture, such user
studies fall under the umbrella of co-design or participatory
design [11], where the occupant or user of the space becomes
a crucial entity feeding into the design of the built artifact in
question.

The impact our environment has on our emotions is
embedded deep within our survival instincts and has been
passed on throughout our evolution, as traits that have kept

• All authors are with the Institute of Digital Games, University of Malta.
E-mail: {emmanouil.xylakis.21, antonios.liapis,
georgios.yannakakis}@um.edu.mt˙

us safe and at an advantage against the harmful environ-
ments that surround us. Under this lens, Hildebrand in
his book Origins of Architectural Pleasure [12] highlights the
mechanisms that make up our spatial emotional reactions
and links them to our sense of survival and Darwin’s the-
ory of evolution. Similarly, Appleton’s concept of prospect-
refuge [13] suggests that our perceptual aesthetics are linked
to our preference towards what we consider as a safe place,
a place that offers a good view to the outside world but can
easily be retreated to, in cases of danger.

Given how critical the perception of our surroundings is
to our emotion reactions, it is important to identify which
perceptible “qualities” matter. Human perception is formed
mainly unconsciously [11], but partly conscious affective
reactions can occur when we make assessments of our envi-
ronment (e.g., safety of the space as per the prospect-refuge
view). To understand how different design features impact
these affective responses, bottom-up approaches tend to be
a common practice in architectural and design research by
isolating and adjusting the parameters that comprise the
environment. In this way, relations between design features
and emotions can arise, be processed and quantified. How
features of architectural form elicit emotions is less studied
than environment variables such as lighting and color [3].

The present study aims to explore—quantitatively—the
impact of architectural form on emotions by developing
computational models based on theory-driven parameters
and metrics. In particular, we combine theories from de-
sign and psychology with established practices from af-
fective computing to solicit evidence on the spatiotem-
poral relationship between form and emotion. This work
is an extension of our previous work [14] which studied
how arousal changes according to three expert annotators
viewing a large dataset of recorded spatial navigation se-
quences. This paper extends significantly our earlier work
in several ways. Firstly, this study introduces a new dataset
named AffRooms12, which comprises a broader collection
of shorter spatial navigation videos that incur less fatigue
and cognitive load from participants, compared to the one-
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hour annotation task of [14]. Second, we collect unbounded
time-continuous annotations of both arousal and pleasure
dimensions, allowing us to study their fluctuations when
properties of the built environment change; in contrast, the
study of [14] only collected arousal annotations. Third, we
solicit feedback from a broader sample of the population,
through crowdsourcing platforms, and collect (after data
cleanup) 39 participants’ arousal annotations and 37 par-
ticipants’ pleasure annotations. These participants were not
experts in the annotation protocol used in this study, unlike
the three expert annotators of [14]. Fourth, inspired by [15],
[16], this paper explores different ways of processing the
annotations in order to ensure inter-rater annotator agree-
ment and to derive ground truth labels of affect. This is a
significant departure from the methodology of [14] which
observed changes between the mean affect in each room.
Finally, we go beyond the one-to-one mapping between
each design feature and affect reported in [14], and instead
leverage supervised learning that combines the different
spatial features together to train models of arousal and
pleasure from spatial transitions.

2 RELATED WORK

In this section we provide a brief overview of theoretical
constructs of affect and ways of capturing it (Section 2.1),
followed by an extensive review of studies on the impact of
features of the built environment on affect (Section 2.2).

2.1 Capturing Affect

In practice, the ways in which affect states can be captured
fall under three categories: self-reports, behavioral measures
and measurement of physiological reactions [10], [17]. Self-
reports deal with user-aware feedback to the stimuli while
the other two record data as a bodily or subconscious
result of the elicited affective state in question. While self-
reports are easier to design by utilizing the plethora of
available emotional models, they are the most challenging to
interpret: participants are asked to indicate their direct affect
state, making them vulnerable to participant interpretations
if not explained carefully on the task in question.

The two main theoretical models that we find in the field
of affective computing for capturing affect via subjective in-
put are divided into dimensional models and discrete mod-
els [18], [19], [20]. Dimensional models describe emotions
usually in a two-dimensional (arousal-valence) or three-
dimensional space, with the added dimension of control or
dominance. They idea behind dimensional models is that
all emotions can be placed within bivariate axes and can be
described as coordinates along these dimensions [21], [22],
[23]. The alternative approach is to describe emotions in
a discrete or categorical manner of emotional labels such
as happiness, anger, fear, disgust, etc. [24], [25]. In this
study, we follow the dimensional model and focus on the
two dimensions of arousal (emotion intensity) and pleasure
(valence) in order to solicit annotations of one of these
two dimensions from participants during spatial navigation
footage. The appeal of the dimensional model for this study
is, among other reasons, its ability of representing affect as
scalar variables and thus enabling annotators to indicate

value changes in a time-continuous manner. Even though
dimensional models of affect are known to be sensitive to
inter-rater variability due to their continuous nature (a) they
offer a more intuitive model for time-continuous annotation
and (b) variations in the annotated magnitude can be allevi-
ated using second-order data processing methods [26].

2.2 Affect and Features of the Built Environments

While research has explored many different properties of
space [27], [28], [29], we focus on three important, general
features of architectural form and one feature of lighting.

Curvature—or the organic-like resemblance as compared
to the strict angular property—has been studied both as a
property of objects and within architecture, for the shape of
a building contour [3], [4] or the shape of perforated facades
[30], [31]. Research on this type of design parameter points
to a positive preference by participants [32] while other
work links this to higher activation when shown to users [3].
The resulting reactions are interpreted as an instinct of threat
that angular and rectilinear forms may convey. Vartanian et
al. [2] instructed participants to point their preferred choice
on the approach-avoidance dimension regarding the curved
properties of depicted two-dimensional shapes. Other stud-
ies have explored the dimensional model regarding impact
of curvature on arousal and pleasure dimensions. Banaei et
al. [4] categorized generated rooms into clusters according
to their pleasure, arousal and dominance ratings annotated
by participants via the self-assessment manikin [22]. They
noted that rooms with higher curvature properties result
in higher arousal and pleasure while higher angularity in
interior forms correlates negatively with both dimensions.
The connection to curvature with higher valence and lower
arousal has been observed in [33], [34] where angularity and
sharp objects result in higher arousal ratings by participants.

Color appearance and materials is another core parameter
explored in studies that wish to uncover their perceptual
affective impact on inhabitants. Garip et al. [35] studied the
reactions to concrete materials in a children’s school with
an experiment that involved 33 children aged 6-7 viewing
the proposed classroom designs in Virtual Reality (VR).
The study revealed that the proposed material variations
and lighting settings did not produce significant effects, as
children at these ages seemed to focus more on identifiable
objects around them rather than on the background. Coşgun
et al. [36] recruited 298 students to assess wall coverings in
wood, metal and concrete (in two tones) in the context of
café environments along 11 semantic bipolar dimensions.
In this context, light-colored wall coverings were perceived
more favorable than dark-colored ones, while light-colored
wooden wall coverings were considered a warmer material
than concrete and metal. Gomez-Tone et al. [37] recruited 22
students to rate their preference for materials in combination
with size, enclosure, degree of perforation and style during
VR navigation. Responses evidenced relations between stu-
dent study year and sensation responses from professional
architects. Lastly, Lipson-Smith et al. [38] studied the impact
of colored walls in different contexts of virtual living rooms,
waiting rooms and empty rooms. Results obtained from 100
participants in a VR experience per room showed significant
correlations between two annotation models: a dimensional
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Fig. 1. Views of the 24 rooms examined in the AffRooms12 corpus

annotation for valence and a discrete annotation via the Pick-
A-Mood scale [24].

Instead of focusing on a specific design feature and
adjust it to study participant responses, a number of studies
explore the spatial properties as a whole by using the
stimulus (e.g. room) in its context. Bianconi et al. [11] sought
to measure the impact of virtually constructed prospect
spaces in VR on different emotional labels. Spaces such as
creativity rooms, study areas, socializing and relaxing rooms
were ranked by 40 participants on the emotional labels of
careful, pleasant, stimulating, happy, serene, calm, relaxing
and satisfying. In that study, researchers collected data
regarding a school renovation project in order understand
whether the expected reactions for their designs is inline
with what the potential users believe. Similar work [2], [39]
explored the spatial properties with the use of photographs,
where participants must usually choose preferred designs
for a given emotion or affect state.

3 AFFROOMS12 DATASET

Our work hinges on soliciting human annotations of affect
during spatial navigation tasks; to achieve this, a diverse
set of stimuli representing features of the built environment
need to be designed. We build on previous work [14] and
identify three dimensions of architectural form and one
dimension of lighting in order to produce a diverse set of
rooms that one can navigate through. This paper re-uses
rooms designed in earlier work for producing the AffRooms
dataset [14]: a dataset of 20 videos of spatial navigation
passing through the same 24 rooms (in different order per
video). To lower cognitive load and time requirements for
annotating such long videos, in this paper we introduce
the AffRooms12 dataset1 which contains 55 videos of spatial
navigation between 12 different rooms, chosen randomly
from the 24 possible room configurations. See Table 1 for
dataset properties.

1. The dataset is available at https://osf.io/b3ra5

TABLE 1
AffRooms12 Dataset properties

Properties
Total number of videos 55
Number of different rooms 24
Rooms per video 12
Mean duration per video (secs) 141
Total database duration (hours) 17.2

3.1 Designing Spaces and Recording Navigation

This paper explores four design features in terms of their
impact on perceived arousal and pleasure: contour curvature,
ceiling height, occlusion, illumination color. The first three
are dimensions of architectural form, and in our dataset
can take two values (feature is present or absent); the last
one is a dimension of interior lighting and can take three
values (neutral, blue, or red light). Ceiling height can be
high (present) or low (absent), while rooms may be empty
(occlusion is absent) or populated with two interior walls
and 6 columns that block both visibility and the player’s
path (occlusion is present). When curvature is absent, rooms
are rectangular; when curvature is present, the room is
cylindrical if the ceiling is low or domed if the ceiling is
high. Figure 1 shows all possible room configurations based
on these dimensions; more details can be found in [14].

Each video in the AffRooms12 dataset was produced by
randomly selecting 12 room configurations among the 24
possible and building a sequence of rooms procedurally
within the Unreal game engine. Every room sequence begins
at a small, empty hallway which is connected to the first
room through a sliding door (which opens automatically
when the player approaches it); each room after this is
similarly connected with a sliding door to the room before
it. The sliding doors are always placed at opposite sides of
the room, and therefore the player can simply walk straight
(unless occlusion is present) to access the next room. Once
the room sequence is built, the first author of the paper
navigated from the starting hallway to the final room and
recorded their interaction. The video recording includes
pauses to the movement to look around, to give annotators

https://osf.io/b3ra5
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a better view of the surroundings. To allow more reaction
time for real-time annotation, raw recorded videos were
slowed down by 50%, which did not affect the viewing or
navigation experience.

3.2 Design Parameters as Inputs
To assess the impact of space on emotion, we need ways
of quantifying properties of the space. For each of the
design features explicitly used to build our 24 rooms, it
is straightforward to derive features: 0 and 1 for absence
and presence of curvature, height, occlusion, and -1 (blue),
0 (neutral), and 1 (red) for illumination color.

When using these metrics to predict affect changes be-
tween a room A and a room B (see Section 4), the metrics
used as inputs include the four features (curvature, height,
occlusion, illumination color) of each room, as well as their
difference (∆). In addition, since navigation times in the
recorded videos differ between rooms (especially in the case
of rooms with many occlusions), we include in the model’s
inputs the total duration (in seconds) spent traversing each
room.

4 ANNOTATION PROTOCOL & DATA COLLECTION

Annotations for arousal and pleasure were collected using
the PAGAN annotation tool [40]. The tool enables users
to report their moment to moment affect changes (up or
down) in a single affect dimension. Annotators register their
affect in a continuous and unbounded manner using the
RankTrace protocol [19], while viewing pre-recorded videos
of spatial navigation. RankTrace allows users to define the
degree of change of the affect dimension in an unbounded
fashion, while showing the users the entirety of this ses-
sion’s annotation so far (see Fig. 2).

We conducted two separate experiments: one for an-
notating arousal and another for annotating pleasure. Par-
ticipants of each experiment would annotate a number of
pre-recorded navigation videos from the AffRooms12 dataset
(see Section 3) on the same affect dimension each time. At
the beginning of the experiment, the user was shown a
description of the annotation task. For arousal annotation,
the following instructions were provided: You will be asked to
register Arousal changes in the videos that follow by decreasing
or increasing the appropriate level. Arousal is the intensity of
emotion. Arousal increase means excitement, tension, stimulation,
while arousal decrease is connected with boredom, fatigue and/or
calmness. For pleasure annotation instead, we provided the
following instructions: You will be asked to register Pleasure
changes in the videos that follow by decreasing or increasing
the appropriate level. Pleasure characterizes positive emotions.
Pleasure increase is connected with beautiful, exciting, calm,
while pleasure decrease describes dull, uncomfortable and/or tense
environments.

4.1 Participants and Data Cleaning
Participants were employed to contribute to the study us-
ing the Mechanical Turk crowd sourcing environment by
Amazon. The survey was open to individuals regardless of
background, ethnicity, gender or any relevance to design
and the arts. A total of 100 individuals participated in the

Fig. 2. Screenshot of PAGAN [40] using the RankTrace [19] tool dur-
ing an arousal annotation task: navigation video (top) and continuous
arousal annotation (bottom).

annotation task (50 per affect dimension). Each participant
annotated 6 videos, selected at random from the 55 in
the AffRooms12 dataset. Ethics approval for the present
test protocol was obtained from the University of Malta
Research Ethics Committee and participants were informed
on the purpose of the study, the use of their contributed
data and their option to withdraw their participation at any
moment throughout this experiment. A number of steps
were taken to clean up the dataset. First, incomplete sessions
and duplicates were removed from the dataset. Second,
the interactions with the annotation tool are checked: since
RankTrace can be used in a continuous fashion, whenever
a user interacts with it (e.g. registers a change in affect),
we log it. Following the literature on time-continuous af-
fect annotation [41], we remove traces with less than 10
interactions in total (i.e. affect changes), as we consider
that the user was idle and not meaningfully interacting
with the experiment. Lastly, navigation videos that were
not annotated by at least 2 participants are also rejected,
as inter-rater agreement is important for the analysis of our
data. After this cleanup process, the dataset contains 224
annotated videos of arousal from 39 participants and 215
annotated videos of pleasure from 37 participants. While
we specified on Mechanical Turk that participants could
only participate on either pleasure or arousal annotation, 5
participants in the clean dataset performed both annotation
tasks. However, since the navigation videos are randomly
selected every time, it is unlikely that these participants
saw the same stimuli in their second annotation session.
As per their self-reports, these 71 total participants were in
their majority (77%) between 25 and 45 years old, and had
completed a university education (82%); 33% identified as
female and 67% as male.

5 DATA ANALYSIS FRAMEWORK

To analyze our data for patterns between affect and room
properties, we process the annotations per video. To capture
the ground truth of affect reactions to space, we rely on
inter-annotator agreement for the same stimulus (navigation



5

Fig. 3. Framework for processing and analyzing the data, deriving rela-
tive labels, estimating inter-annotator agreements, leading up to training
the classifier and Preference score ordering. The pipeline follows the
structure of Sections 5 and 6.

video) and affect dimension (arousal or pleasure). Figure 3
summarizes our data processing steps.

5.1 Extracting Affect Measures from Annotation Traces

Following the methodology of [14], we treat the room where
the player is in at the time in the recording as the (sole)
elicitor of the affect annotation. Therefore, we split the time-
continuous annotation signal collected by RankTrace based
on which room is currently visited in the recording. Each
annotation is thus split into 12 time windows (one per
room), with each time window starting from the moment
the player entered the room and ending the moment the
next room in the queue is entered. We refer to these time
windows as room windows [14]. Note that we remove any
data where the player is not in one of the tested rooms (e.g.
while being in the starting empty hallway).

While the raw annotation data from RankTrace is un-
bounded, before processing it further we normalize it to the
value range of [0, 1] through min-max normalization. This
is done individually per annotation trace, as we assume
that the idiosyncratic annotations of each stimulus can still
contain information regarding higher and lower values if
we treat these in an ordinal fashion [26], [42]. We then split
the normalized annotation trace per room window. This
results in 12 different sub-traces, which can be processed in
different ways to derive summary metrics (as scalar values)
that can be used in an ordinal fashion. We use the following
affect metrics in this paper:

• Affect Amplitude: calculated as the difference be-
tween the maximum and minimum of the affect data
points within the room window. A high value means
that there were large shifts in emotion annotation
while the user was in the room.

• Affect Gradient: calculated as the sum of absolute
differences between consecutive data points (sam-
pled at 4Hz) within the room window. We hypothe-
size that when annotators fluctuate their affect states
during the window, different stimuli may be trigger-
ing them. While amplitude measures the difference

Fig. 4. Impact of memory m considered in IMs for m = 5 (left), m = 3
(right), with upwards relation shown as up arrow, downwards relation
with down arrow and ambiguous with equal sign. Only shaded cells
(upwards or downwards) are retained as valid labels.

between high and low points, a trace may have a
high gradient without a corresponding high value
in amplitude if the user was changing annotation
direction often.

Following [19], [31], we consider amplitude and gradient
as relative measures that assess changes of emotion, and
are ideally suited for the unbounded affect traces produced
by RankTrace [19]. We further process these metrics in an
ordinal fashion by observing differences between metrics in
different rooms within the same video.

5.2 Ordinal Treatment of Affect Measures
To derive relative labels from the signal, we follow the
Qualitative Agreement (QA) approach proposed by Cowie
and McKeown [15]. According to the QA approach, each
resulting user-annotated trace is split into bins of standard
size; after that, pairwise comparisons between the bins
for each trace are made and subsequently stored into an
individual matrix. The bin size in our case is the room’s
duration during spatial navigation. Our bin sizes differ here
from QA’s uniform bin sizes: since each room is not being
navigated in the same manner and time-span, each bin
contains a different number of frames (and annotation data
points). Below we describe how the QA method is applied
for each of the metrics of Section 5.1.

Since each video contains 12 rooms, the resulting indi-
vidual matrix (IM) is a 12 by 12 matrix (i.e. per video and
per user) containing the results of the pairwise comparison
of all bins. A video may have multiple IMs according to the
number of participants that annotated that particular video.
To compare how the two affect metrics (detailed in Section
5.1) change between two rooms in the IM, we mark the
direction as upwards, downwards or ambiguous. If the affect
metric of the room in the IM row is lower than that of the
room in the IM column, we mark it as an upwards relation
for that bin, and if the opposite is true as downwards. If
the absolute difference between the affect metric for the
two rooms is below an ambiguity threshold (ϵ), we consider
this difference as ambiguous for that bin. In our study we
explore three different thresholds for ambiguity (0.0, 0.05
and 0.1) based on past work [43].

Lastly, to create a balanced dataset for our classifier we
take into account not only the upper part of the individual
matrix as proposed in the QA approach [15], but also
the lower part of the matrix marking the opposite trend
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relationship of the pair. For example, when the pairwise
comparison trend between rooms A and B is marked as
upwards then the comparison trend between B and A is
marked as downwards (see Fig. 3; Ordinal treatment step).
This ensures a 50% random guess baseline for our predictive
models (see Section 6).

Through this process, the IM contains the relationships
of each room versus all remaining rooms for a single user.
While the IM contains all relevant information for one
annotation session and affect metric, we do not necessary
wish to compare affect across all rooms in the video. We
hypothesize instead that a comparison in terms of affect
responses is more relevant between consecutive rooms, i.e.
that annotators may have short-term memory patterns in
their annotation that may not hold throughout the entire
trace. To cater for this, we introduce a memory (m) parameter
as the number of neighboring rooms considered in terms
of ordinal relationships. This memory parameter can be
applied directly on the IM, as shown in Fig. 4. In this
paper we test four memory thresholds: m = 1 (i.e. only
considering consequent rooms), m = 3, m = 5 and m = ∞
(i.e. comparing affect across all rooms).

5.3 Leave-One-Subject-Out Cross-Validation Protocol
To evaluate the performance of our models, we employ a
leave-one-subject-out cross-validation (LOSOCV) approach
during training and testing. If we assume n participants
contributing their annotations, we first isolate three partic-
ipants for hyperparameter tuning (external validation set),
while the remaining n−3 participants undergo LOSOCV. RF
training uses the scikit-learn Python package [44], and the
hyperparameters tuned are: the number of trees, maximum
tree depth, minimum number of samples per leaf node and
minimum number of samples required to split a tree node2.
All hyperparameters are tuned via exhaustive search tar-
geted at maximizing accuracy on the validation set. The val-
idation set, which consists of annotations from 3 participants
on multiple video stimuli, uses the IMs of each participant
to test models trained on the remainder of the dataset (n−3
participants). The best performing hyperparameters based
on test accuracy on this external set of 3 participants’ IMs
is used in follow-up LOSOCV sets. The hyperparameter
configurations for the top performing models, covering both
affect labels and metrics, are presented in Table 4. Note that
these 3 participants are never included for either training or
testing in follow-up LOSOCV steps discussed below.

For training and testing via LOSOCV, each fold uses
(n− 3)− 1 participants for training and one participant for
testing. We derive different datasets through this process by
exploring parameter tuples of our QA framework (memory,
agreement tolerance, ambiguity threshold). Test accuracy is
measured on the left-out participant’s IM, while the training
set undergoes a more involved process based on inter-
rater agreement. For each video in the corpus, the IMs of
annotators in the training set are joined into a singular
consensus matrix (CM) as follows: we assign a label in the
CM (upwards or downwards as per Section 5.2) if the ratio
of annotators agreeing with this label is above an agreement

2. Apart from the listed hyperparameters, the default values for
Random Forests on scikit-learn are used.

tolerance threshold (at). In this paper we explore different at
values of 50% (simple majority), 66% and 75% as well as
a baseline with at = 0% where all users’ data is treated as
valid. The training set uses the CMs calculated per video
(only considering the (n − 3) − 1 participants), while the
trained model is then tested on videos that the left-out
participant has annotated individually (IM).

6 RESULTS

Through our crowdsourcing experiment, we have collected
a corpus of annotations as listed in Table 1. By processing
our annotations as discussed in Section 5, and calculating
model inputs as discussed in Section 3.2, we can compare
how the space impacts the affect dimensions of arousal
and pleasure annotated by our participants. The following
sections present the analysis of our results.

6.1 Parameter Tuning for Affect Prediction

In order to assess the potential of Random Forest classifiers
(RF) for the task of predicting changes in affect amplitude
or affect gradient when parameters of the environment
change, we performed an extensive experiment with differ-
ent parameter settings. Since RFs are stochastic by nature,
experiments with leave-one-subject-out were repeated 10
times. The results are reported in Tables 2 and 3, with
the classification accuracy and the number of data points
that the model is trained on. Unsurprisingly, we observe
that higher thresholds for what constitutes a valid change
according to an extended majority results in much smaller
datasets. Especially for at = 75% the dataset size drops
significantly, at least when comparing only consecutive
rooms (m = 1); however, those parameter pairings seem
to yield some of the most accurate models. An expected
behavior is the sub-par performance for ϵ = 0, since the
dataset includes every minor change as valid—which in
turn confuses the predictive models. Surprisingly, ignoring
inter-rater agreement (at = 0%) does not seem to lead to
a drop in accuracy despite retaining multiple user perspec-
tives. Only comparing consequent rooms (m = 1) seems
to lead to better models overall; for affect amplitude larger
memory windows seem to perform better, but accuracies are
generally low. While none of the models reach particularly
impressive accuracies on this challenging leave-one-subject-
out task, binomial testing [45] was used to establish statis-
tical significance (at p < 0.05), with the hypothesis that the
observed prediction is significantly different from chance.
Based on the binomial test, we calculated the test statistic
using the observed accuracies and compared these to the
total number of samples on each dataset, with the expected
probability set to 50%, reflecting the balancing of the dataset
(see Section 5.2). Tests show that accuracies in Tables 2 and 3
are significantly above the 50% baseline except for pleasure
amplitude at at = 75%, ϵ = 0.05,m = 5 (at 50.3% accuracy)
and pleasure amplitude at at = 50%, ϵ = 0.0,m = 3 (at
49.4% accuracy). It is evident that changes in the affect
gradient are easier to predict from the changes in design
features, with test accuracies as high as 69% for arousal
gradient and 68.1% for pleasure gradient. In comparison,
predicting changes in affect amplitude is more challenging,



7

TABLE 2
Test accuracies (%) for arousal modeling. Bold highlights single highest

scores per affect treatment. Accuracies (and dataset sizes in
parentheses) are averaged from 36 leave-one-participant-out

experiments.

Memory (m)
at ϵ 1 3 5 ∞
Arousal Gradient

0%
0 63% (2.1K) 62% (7.9K) 61% (16.5K) 62% (29.3K)

0.05 67% (796) 65% (2.8K) 64% (6.1K) 64% (11.1K)
0.1 69% (403) 66% (1.3K) 64% (2.8K) 65% (5.2K)

50%
0 64% (390) 63% (1.1K) 61% (1.8K) 62% (2.6K)

0.05 66% (336) 64% (912) 64% (1.4K) 65% (2.1K)
0.1 69% (264) 65% (641) 64% (1K) 66% (1.5K)

66%
0 65% (225) 62% (670) 62% (1.1K) 63% (1.6K)

0.05 67% (124) 66% (517) 64% (1K) 64% (1.6K)
0.1 69% (56) 66% (309) 65% (719) 64% (1.1K)

75%
0 65% (130) 63% (371) 62% (694) 63% (1.1K)

0.05 66% (42) 65% (180) 65% (559) 65% (1.1K)
0.1 67% (8) 67% (57) 65% (323) 65% (741)

Arousal Amplitude

0%
0 55% (2K) 53% (7.6K) 55% (16K) 54% (28.4K)

0.05 60% (1.5K) 60% (5.7K) 60% (12K) 61% (21.5K)
0.1 60% (1K) 61% (4K) 62% (8.6K) 62% (15.6K)

50%
0 57% (383) 54% (1.1K) 55% (1.7K) 58% (2.5K)

0.05 60% (360) 60% (1.1K) 60% (1.6K) 61% (2.4K)
0.1 60% (332) 60% (975) 61% (1.5K) 62% (2.3K)

66%
0 61% (190) 56% (610) 54% (1K) 54% (1.5K)

0.05 62% (159) 60% (626) 60% (1.1K) 61% (1.6K)
0.1 62% (132) 60% (558) 61% (1.1K) 62% (1.6K)

75%
0 59% (91) 57% (281) 54% (624) 53% (1K)

0.05 62% (69) 59% (261) 60% (651) 60% (1.1K)
0.1 62% (42) 59% (207) 61% (591) 60% (1.1K)

with the highest test accuracies for arousal amplitude at
62.3% and for pleasure amplitude at 61.8%. For arousal
gradient, the highest accuracy (69%) is with two datasets
of ϵ = 0.1, m = 1 and either at = 50% or at = 66%; since
the number of data points is much higher for at = 50% (264)
than for at = 66% (56), we prefer the former and treat it as
our best model for arousal gradient. For pleasure gradient,
the best model is with ϵ = 0.1, m = 1 and at = 66% (68.1%
accuracy); the second best model is at at = 50% and the
same m and ϵ (65.9% accuracy), but on a far larger dataset
(263 data points versus 57 for the best model). Since the
QA method is expected to lead to more robust ground truth
data, for the sake of a larger dataset we opt to use data with
ϵ = 0.1, m = 1 and at = 50% for both pleasure and arousal
gradient as “best” for additional experiments in Section 6.2.

6.2 Different Predictive Models
Through the extensive validation process of Section 6.1,
we confirm that affect gradient as a metric is more easily
predicted by the design features of architectural spaces.
Therefore, we use the datasets with the highest accuracy
and sufficient dataset size from Tables 2 and 3, i.e. with
at = 50%, ϵ = 0.1 and m = 1. For these datasets, the
average test accuracy of the RF are 69% for arousal gradient
and 65.9% for pleasure gradient.

We compare the RF method with other popular clas-
sification algorithms from the literature: linear and non-
linear Support Vector Machines (SVM) [46] and Naive Bayes
(NB) [47]. For the non-linear SVM we utilize the Radial
Basis Function (RBF) kernel while for all classifiers we
follow the same leave-one-subject-out approach described

TABLE 3
Test accuracies (%) for pleasure modeling. Bold highlights single

highest scores per affect treatment. Accuracies (and dataset sizes in
parentheses) are averaged from 34 leave-one-participant-out

experiments.

Memory (m)
at ϵ 1 3 5 ∞
Pleasure Gradient

0%
0 57% (2K) 58% (7.4K) 58% (15.6K) 59% (27.6K)

0.05 66% (753) 64% (2.5K) 64% (5.5K) 60% (9.9K)
0.1 66% (388) 65% (1.3K) 63% (2.7K) 63% (4.9K)

50%
0 64% (409) 59% (1.1K) 57% (1.8K) 59% (2.5K)

0.05 66% (362) 63% (914) 64% (1.4K) 63% (2K)
0.1 66% (263) 65% (623) 64% (933) 64% (1.4K)

66%
0 64% (216) 62% (692) 55% (1.1K) 57% (1.6K)

0.05 66% (144) 64% (549) 63% (1K) 63% (1.5K)
0.1 68% (57) 65% (325) 64% (677) 64% (1K)

75%
0 64% (120) 62% (362) 53% (683) 54% (1.1K)

0.05 64% (34) 65% (178) 64% (572) 63% (1K)
0.1 60% (9) 65% (63) 64% (334) 64% (692)

Pleasure Amplitude

0%
0 56% (1.9K) 54% (7.3K) 56% (15.3K) 57% (27.2K)

0.05 59% (1.3K) 59% (4.8K) 52% (10.2K) 52% (18.4K)
0.1 58% (840) 60% (3.3K) 60% (7K) 59% (12.8K)

50%
0 60% (363) 49% (1.1K) 52% (1.7K) 54% (2.4K)

0.05 60% (347) 59% (1K) 52% (1.6K) 55% (2.3K)
0.1 60% (344) 60% (960) 61% (1.5K) 62% (2.1K)

66%
0 58% (163) 56% (575) 52% (996) 52% (1.5K)

0.05 56% (148) 59% (592) 57% (1K) 53% (1.5K)
0.1 59% (109) 60% (541) 59% (1K) 60% (1.5K)

75%
0 58% (85) 57% (286) 51% (550) 52% (912)

0.05 60% (66) 58% (263) 50% (620) 54% (1.1K)
0.1 59% (26) 58% (171) 57% (551) 56% (1K)

in Section 5.3. Hyperparameters that are tuned here are the
C hyperparameter for both SVMs, as well as gamma for the
non-linear SVM (for the linear SVM gamma is set to 1). For
the Naive Bayes classifier we tune the smoothing parameter
alpha. All machine learning algorithms use the scikit-learn
Python package [44], with default hyperparameters except
those noted.

Table 4 compares the performance of the different mod-
els on predicting arousal and pleasure gradient and ampli-
tude changes between rooms. Beyond accuracy, we include
precision (true positives versus all positives), recall (true
positives versus all samples that should have been identified
as positive), and F1 score (harmonic mean of the precision
and recall) as established measures for classification tasks.
We establish statistical significance via Wilcoxon signed-
rank tests on the same test folds (for paired data) at p < 0.05;
when reporting significance in multiple comparisons, the
Bonferroni correction is applied [48]. Table 4 indicates that
the RBF SVM underperforms, reaching significantly lower
F1 scores and recall values compared to all other models on
all affect metrics, and significantly lower test accuracies than
all other models in all affect metrics except pleasure ampli-
tude. Other models reach similar test accuracies, between
68% and 70% for gradient metrics and lower (between 60%
and 63%) for amplitude metrics. There are no significant
differences between these models for test accuracies, except
the NB model outperforming Linear SVM for pleasure am-
plitude. On the other hand, RF has a significantly higher F1
score and recall than other models for arousal amplitude,
but for other affect metrics there are no significant differ-
ences. While NB models tend to have higher test accuracies
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TABLE 4
Classification performance of the best affect datasets for different

predictive models. Results are averaged from leave-one-subject-out
runs and 95% confidence intervals are included.

Model Accuracy F1 Score Precision Recall Hyperparams*
Arousal gradient

RF 69%±2.6% .68±.028 .67±.026 .70±.039 {100, 3, 6, 6, T}
Lin. SVM 68%±3.0% .68±.030 .65±.025 .72±.043 {1}
RBF SVM 59%±3.3% .39±.056 .66±.061 .29±.055 {100, 1}

NB 68%±3.3% .66±.038 .67±.031 .66±.050 {89}
Pleasure gradient

RF 66%±5.5% .65±.057 .67±.059 .63±.060 {50, 5, 10, 10, T}
Lin. SVM 69%±4.5% .66±.058 .65±.057 .67±.062 {9}
RBF SVM 60%±4.1% .40±.059 .67±.081 .29±.051 {1, 1}

NB 70%±4.6% .64±.060 .71±.063 .59±.060 {1}
Arousal amplitude

RF 61%±2.5% .55±.032 .61±.042 .52±.039 {50, 3, 2, 2, T}
Lin. SVM 62%±2.5% .51±.034 .67±.042 .43±.043 {3}
RBF SVM 54%±2.0% .29±.036 .56±.062 .21±.030 {1, 10}

NB 63%±2.3% .50±.032 .69±.042 .40±.032 {56}
Pleasure amplitude

RF 60%±5.1% .50±.056 .64±.069 .41±.051 {50, 7, 2, 2, T}
Lin. SVM 58%±3.9% .57±.045 .57±.047 .58±.051 {5}
RBF SVM 55%±3.7% .29±.050 .53±.094 .21±.036 {1, 0.1}

NB 63%±4.3% .49±.058 .66±.075 .40±.050 {56}
* The tuned hyperparameters for these models are shown in order
as follows. For RF the array is {Number of estimators, max. tree
depth, min. number of samples required to split an internal node,
min. number of samples required to be at a leaf node, whether
bootstrap samples are used when building trees (True or False)}.
For Lin. SVM the array is {C} and for RBF SVM the array is {C,
gamma}. For NB the array is {smoothing parameter alpha}.

than RF and linear SVM models, those differences are not
significant; instead, recall values for RF models are signif-
icantly higher than NB models for all affect metrics. The
linear SVM performs generally on par with RF models, with
no significant differences for test accuracy. Based on this, RF
models perform comparably to other models in general; we
argue in favor of using RFs in Section 7 and leverage them
again for finding which spatial features impact emotion in
Section 6.3.

6.3 Impact of Different Spatial Features
Looking at the feature importance of the different inputs,
Table 5 lists the five most important features for the RF
(based on mean decrease in impurity within each tree)
for all affect metrics. We use RFs for this analysis as they
perform well (see Section 6.2) and are more interpretable
for the task of deriving feature importances. We observe
that occlusion plays a major role for both affect labels and
metrics. Considering that the gradient captures how often
a user changes their arousal or pleasure annotation within
the same room and amplitude captures the range of change
within that room, this finding is not surprising: rooms
with occlusions reveal parts of the room at different times,
and there are more surprising moments that may result
in annotation changes. Illumination color has some impact
as a predictor for both arousal and pleasure, which aligns
with existing theories for the impact of illumination color in
digital games [49]. Height as a predictor contributes mildly
to both arousal models while curvature seems to contribute
more to pleasure models. Both findings align with theories
regarding the impact of scale and arousal or awe [50] and

TABLE 5
Top five features of RF predictors for affect gradient and amplitude
changes between rooms A and B (and their difference ∆ for this

metric), calculated based on mean decrease in impurity.

St
at Arousal Pleasure

feature weight feature weight

G
ra

di
en

t Occlusions A .408 Occlusions ∆ .518
Duration .219 Occlusions A .217

Occlusions ∆ .186 Duration .118
Height ∆ .030 Illumination ∆ .055

Illumination ∆ .030 Curvature ∆ .022

A
m

pl
it

ud
e Occlusions ∆ .572 Occlusions ∆ .321

Duration .162 Duration .195
Illumination A .083 Occlusions A .193

Height B .049 Illumination ∆ .121
Occlusions B .044 Curvature ∆ .063

curvature or non-rectilinearity on pleasure [30], [51]. Finally,
we observe that the duration of the navigation in both rooms
is an important feature for all models, indicating that factors
such as recorded viewing behavior and navigation pace
play an important role in the manner the environment is
perceived and annotated by the participants.

7 DISCUSSION

Our framework introduced a method for capturing and
treating unbounded and dimensional data of arousal and
pleasure in order to find a mapping between affect and
environmental stimuli of the spaces we navigate in. Taking
advantage of a large pool of annotators (i.e. 39 and 37 for
arousal and pleasure, respectively) we process the collected
data in an ordinal manner seeking agreements across anno-
tators. To find the mapping between affect and space, we
leverage non-linear affect models that consider four design
parameters as their input, in addition to the duration of
the walkthroughs. Results indicate that affect gradient is
an easier measure to predict, yielding reasonably accurate
models with test accuracies around 69% for the best models
when predicting arousal gradient and pleasure gradient.

The methodology presented here took advantage of
crowdsourcing platforms and inter-rater agreement to pro-
duce a robust dataset with over 200 annotated videos for
both arousal and pleasure. This significantly extends our
earlier work [14] which was limited in scope to a few ex-
pert annotators experienced with the RankTrace protocol. It
should be noted, however, that while we explored different
ways of treating affect and ways to improve the integrity
of the original data annotations, many of the models were
rather weak in terms of their test accuracy. Alternative
feature representations may be necessary to address this
limitation. Preliminary tests for predicting the change in
mean arousal or pleasure (calculated on a per-room basis)
from one room to the next yielded accuracies close to the
baseline; thus we reverted to more robust affect metrics that
measure relative change within each room instead. Addi-
tional experiments were conducted with linear and non-
linear SVM and Naive Bayes (NB) classifiers, demonstrating
comparable behavior to our Random Forest model (see Ta-
ble 4). While NB shows improvements in test accuracy, it is
worth noting that the predictor relies on strong assumptions
regarding feature independence. For the current dataset,
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this seems to works well, but can pose challenges in future
additions to the input set where features may be correlated
(e.g. room volume and height). Furthermore, both Naive
Bayes and SVM classifiers are sensitive to mixed data types,
such as continuous and interval data; RFs are versatile in
handling both data types. These observations motivate us
to use RFs for this problem (including the extensive tuning
reported in Tables 2 and 3), as we aim to further enhance
the Affrooms12 dataset with more representations and data
types in future work. The analysis on the feature importance
of the best performing predictors exhibited similar results
for both metrics and affect labels. Occlusion within the room
itself affects how often and how much annotators register an
affect change as new stimuli come into view. Following that,
height and illumination had some impact for arousal predic-
tion, while curvature and illumination had some impact for
pleasure prediction. In future work it is necessary to expand
the analysis of this study via (a) modeling the current affect
metrics with more advanced machine learning algorithms
(e.g. using the raw footage in a computer vision approach
such as [43], [52]); or (b) identifying new ways of processing
the annotation so that we better leverage its unbounded and
time-continuous nature.

It is worth noting that we build on several assumptions
when constructing the ground truth of affect which we
attempt to map to characteristics of the built environment.
While we explore the impact of different parameters such
as ambiguity threshold (what annotation changes would
qualify as different), memory (how far back an annotator
remembers and subconsciously compare their current emo-
tion levels) and agreement threshold (how many annotators
need to have similar annotation behaviors to consider those
“universal”), we chose the best parameters based on their
performance on a classification task using the character-
istics of the built environment as input. However, more
assumptions could be tested: indicatively, the use of a
majority rule for deriving “universal” annotation behavior
(via the agreement threshold) may overlook clusters of
annotators that agree with each other but do not achieve a
general consensus. The literature has suggested that inter-
rater variability may be due to multiple (equally valid)
perspectives [53]; however, with the few annotators per
video in this study (average 4 annotators per video), further
clustering would make consensus-building difficult. Future
studies could collect a larger set of annotations on fewer,
likely longer, navigation videos and test whether multiple
perspectives exist in the affect fluctuations.

Since the AffRooms12 dataset is now publicly available,
we expect that additional methods for processing or mod-
eling the signals, videos and metadata will be forthcoming.
Regarding future work beyond the AffRooms12 dataset, we
have identified that the current spatial stimuli may not be
sufficient to elicit visceral affect reactions; this may lead to
more noise and biases in the ground truth data. While inter-
annotator agreement aimed to cater for individual report-
ing biases, developing a more stimulating video recording
with more diverse environments (e.g. with more objects,
interplay between light and darkness, and textures) is more
likely to yield more reliable affect annotations at the cost
of tractability. A more involved environment with e.g. more
occluding elements or branching paths would allow us to

study more complex interior arrangements, perhaps pro-
cessed via isovists and space syntax features [54]. Prelim-
inary experiments for this paper with such metrics did not
seem to result in better predictive models, perhaps due to
the simplicity of the room structures and navigation expe-
rience. Future studies could incorporate room context and
intended use, as in the dataset curated by Gregorian et. al.
[55] which comprises of first-person-view video recordings
of traversals within constructed environments. Combining
our annotation and processing approach with such stimuli
can offer valuable insights into the interplay between spatial
contexts and affect. Future work could also explore more
task-oriented navigation, e.g. using game elements such
as monsters, locked doors and keys, to make the naviga-
tion more tense [56] and camera facing more important
(e.g. when searching for a key in the rubble). This was
indicatively explored using YouTube streamers’ “Let’s play”
videos of a horror game level, mapping architectural and
game design elements to derived emotions from streamers’
facial expressions and voice [57]. Finally, while in this paper
many users annotated the same pre-recorded videos of
spatial navigation, annotators could also be in control of the
navigation task itself. In a recent study conducted by the au-
thors [58], interactive virtual environments were leveraged
to investigate how a user can annotate while they explore
the space (partially, as their movement is restricted). The
findings revealed notable inter-annotator agreements on the
impact of architectural features to pleasure, highlighting the
role of action in perception [59].

8 CONCLUSION

Motivated by research on the impact of architectural form
and light on affect, this paper significantly extends our
pilot study [14] by introducing a new and more extensive
dataset of 3D spatial navigation videos, Affrooms12, and a
total of 76 annotation traces of arousal or pleasure. In this
paper we performed a first analysis of the annotation data,
processing them in an ordinal fashion and minimizing noise
through inter-rater agreement. An extensive parameter tun-
ing explored both the annotator’s memory and the different
extracted metrics of affect from the time-continuous un-
bounded annotation traces. Results showed that some affect
metrics are more robust than others, yielding test accuracies
as high as 69% for changes in arousal and pleasure in the
challenging leave-one-subject-out protocol. The dataset is
made available as part of this publication in order to invite
further study in affect modeling during spatial navigation
tasks. Extensions could include taking advantage of addi-
tional modalities such as the recorded footage or the in-
game camera perspective, or new ways of pre-processing
the signals to improve annotations’ validity.
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