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Abstract—Game environments offer a unique opportunity for
training virtual agents due to their interactive nature, which
provides diverse play traces and affect labels. Despite their
potential, no reinforcement learning framework incorporates
human affect models as part of their observation space or
reward mechanism. To address this, we present the Affectively
Framework, a set of Open-AI Gym environments that integrate
affect as part of the observation space. This paper introduces
the framework and its three game environments and provides
baseline experiments to validate its effectiveness and potential.

Index Terms—affective computing, reinforcement learning,
virtual environments, baselines

I. INTRODUCTION

Video games are ideal stimuli for research in Affective
Computing [1] for several reasons. Firstly, the user is free to
play in many different ways, leading to diversity in their play
traces and emotional experiences [2]. This freedom allows for
deeper research into the relationship between behaviour and
emotions compared to static stimuli such as videos. Games
also encompass multiple modalities for modelling, such as pix-
els [3], game states [4], and controller inputs [5]. Games have
been at the forefront of research on reinforcement learning
(RL), especially leveraging Open-AI Gym environment [6].
Indicatively, popular RL algorithms such as Proximal Policy
Optimisation [7] have been tested on gameplaying tasks on
the Atari suite of environments [6]. While RL agents focus on
playing to win [8], there are no environments that incorporate
human affect for training emotion-aware gameplaying agents.

Training virtual agents that not only respond to game states
but also human affect enables us to create a more holistic agent
that can model and mimic human players better than training
an agent to beat a game [9]. Cutting-edge RL algorithms like
Go-Explore [10] have been successfully applied to train agents
that exhibit affective responses in line with target human
personas [9] and use affect as a mechanism for beating the
game [11]. Similar works have used RL to train affect-based
virtual agents via simulated, rather than human-like, emotions
[12], as well as intrinsic motivation to imitate human gameplay
demonstrations [13]. However, we believe there is a significant
hurdle for future research: developing the game environments
and sourcing human gameplay and affect demonstrations is a
time-consuming resource-intensive process. Without publicly
available environments—and benchmarks—tied to large-scale
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affect corpora to reduce the development time, moving in this
direction is bound to be a slow and uncontrollable process.

Motivated by this research gap, we present the Affectively
Framework, which incorporates a human-sourced model of
arousal into its observation space. The framework follows
the same philosophy as Open-AI Gym [6] to facilitate easier
integration of new games and agents later. The framework
comes with three game environments based on the stimuli
for the arousal video game annotation (AGAIN) dataset [4],
which contains gameplay data annotated for arousal. The three
game environments offer challenging gameplay as well as
significantly different observation and action spaces among
them. Finally, this paper presents baseline experiments on
training RL agents based on both in-game behaviour and the
human model of arousal, to illustrate the potential of the
framework. The framework is provided as an easy-to-install
package1 that can be used for research into virtual agents that
incorporate affect in their decision-making.

II. AFFECTIVELY FRAMEWORK

The Affectively Framework follows the RL feedback loop of
Open-AI Gym [6], visualised in Figure 1. At each time step,
the framework provides the agent with a game-state (St) and
expects an action (At) in return. Based on the agent’s action,
it returns an updated game-state (St+1) and an environment
score (RE) that reflects the quality of the action, based on
the environments’ scoring system. Using RE , we construct a
behaviour reward (RB) for each game with additional domain
knowledge in order to help the agent during training and
combat the sparsity of RE . The Affectively Framework slightly
modifies the typical training loop by including affect values,
periodically generated every 3 seconds using a human affect
model (see Section II-B). Using the affect values generated
by the human model, we provide an affect reward (RA) for
training agents. In this paper, RA aims to maximise arousal,
but more complex reward functions such as imitating affect
[9], [11] can be used. Using these components, the total reward
Rt to the agent is calculated at each time step as per Eq. (1).

Rt = (1− λ) · n(RB) + λ ·RA (1)

where λ controls the importance of RB or RA, and n(RB)
is the normalised behaviour reward per game based on their

1https://github.com/Matt-Barthet/Affectively-Framework
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Fig. 1. Overview of the Affectively Framework architecture for training affect-
based RL agents. At denotes the action taken by the agent, St is the current
observation, Afft is the current affect value and Rt is the reward assigned to
the agent.

extreme reward values. Below, we describe the game environ-
ments (Section II-A) and the affect model for deriving human
arousal (Section II-B).

A. Environments

The Affectively Framework includes three game environ-
ments, although it is designed for extensibility with more
games in future work. The game environments span three
different game genres: side-scrolling platformers (Pirates),
shooters (Heist), and racing (Solid Rally). These games are
based on the AGAIN dataset [4], which included nine games
with annotated gameplay sessions in each of them. We chose
these three games for their diversity in genre, action/state
space, and gameplay goals. Table I contains the important
information for each game environment.

Pirates is a 2D platformer heavily inspired by Super Mario
Bros. (Nintendo, 1985). In this game, the player moves from
left to right and must reach a goal (exit) in under 2 minutes.
During the level traversal, the player must avoid obstacles
and enemies, as well as pick up coins and power-ups to
improve their score. If the player dies, by falling off-screen
or by colliding with an enemy, they respawn at the closest
checkpoint in the level. The agent’s action space consists of 2
discrete action branches. The first covers horizontal movement:
the agent can move left (-1), stay still (0), or move right (1).
The second covers jumping, where the agent can stay still (0)
or jump (1). The environment’s observation space (St) consists
of an 11×11 grid of integer values (see Fig. 2) corresponding
to IDs of the entities within the grid, with the player always at
the centre (blue). The IDs are assigned on a priority basis, with
enemies (red) having the highest priority, followed by coins
and power-ups (green), breakable tiles (yellow), obstacles
(grey), and empty space (white). Seven additional properties
are appended to St, consisting of the agent’s physics variables
(e.g., velocity, current direction) and game-specific properties
(e.g., current health and power-up status). For Pirates, RE

TABLE I
OVERVIEW OF THE OBSERVATION AND ACTION SPACES FOR EACH

ENVIRONMENT IN AFFECTIVELY FRAMEWORK.

Environment
ST Discrete Actions Continuous

Vector Size (Branch Sizes) Actions

Pirates 852 2 (3, 2) 0

Heist 341 3 (3, 3, 2) 2

Solid Rally 50 2 (3, 3) 0

is the total coins collected (10 points each) and power-ups
collected (20 points each), with a maximum possible score of
460 points if the agent exhaustively searches the entire level.
RB is calculated at each time step as per Eq. (2), as the change
in RE from the previous frame (i.e., if the agent just picked
up a coin or power-up), with two additional components: a
small reward (Mr = 0.1) if the agent moved to the right of
the screen in the last frame (to encourage level traversal), and
a penalty for dying (D = 5) to discourage reckless behaviour.

RB = ∆RE +Mr −D (2)

Heist is a first-person shooter game where the player must
explore the map and eliminate all 25 enemies in the area
within the 2-minute time limit. The player has infinite ammo,
but their weapon holds 11 bullets and reloads automatically
when it is empty. If the player takes enough damage from
enemies’ bullets, they die and respawn at the beginning of the
level; eliminated enemies do not respawn. The environment’s
St consists of a 9×9 grid of IDs using the same approach
described in Pirates, this time within the field of view of the
player (see Figure 2). The possible IDs for tiles in the grid
are obscured (i.e. out of sight, in pink), empty space (yellow),
obstacles (red), and enemies (blue). In addition to the grid, the
agent is supplied with a vector of 20 observations containing
spatial and physics variables as well as game-specific variables
such as health, ammo, and a vector to the nearest visible
enemy. The player’s action space is the most complex of the
three games, with 3 discrete action branches and 2 continuous
actions. The first discrete action covers horizontal movement,
allowing the agent to strafe left (-1), keep straight (0), or strafe
right (1). The second discrete action covers depth movement,
where the agent can move forward (1), stay still (0), or move
backward (-1). The third discrete action covers shooting, where
the player can shoot (1) or do nothing (0). The continuous
actions (with values between -1 and 1) govern the horizontal
and vertical movement of the camera (i.e., aiming the weapon).
For Heist, RE is the number of kills the player has made so
far, with each kill worth 20 points. The maximum possible
score is 500 points (20× 25 enemies). At each time step RB

is calculated as per Eq. (3), as the changes in RE from the
previous time step (i.e., if the agent has just killed an enemy),
with two additional components: a small exploratory reward
(E = 1) every time the agent enters a new area of the map
(the map is partitioned a priori into a grid of 5×5×5 cubes)
and the inverted angle (A) between the agent and the nearest
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Fig. 2. The Affectively Framework. From top to bottom: (a) Pirates platformer
game, (b) Heist first-person shooter, and (c) Solid Rally racing game.

enemy, normalised between -1 (facing away from enemy) and
1 (facing the enemy). In other words, the agent is rewarded for
exploring new areas of the map and for facing nearby enemies.

RB = ∆RE + E +A (3)

Solid Rally is a first-person 3D racing game where the
player controls a rally car and must finish a 3-lap race ahead
of the three opponents’ AI-controlled cars within 2 minutes.
The track contains 8 waypoints that the player must drive
through, which act as reset points if their car gets stuck.
The environment’s St consists of a vector of 50 real values,
which include various physics variables (e.g. velocity, rotation)
as well as spatial variables (e.g. distances and angle to next
waypoint, distance to the nearest objects surrounding the car).
The action space consists of two discrete action branches:
one for steering the car left (-1), right (1) or straight (0),
and one for forward movement, accelerating forward (1),
braking/reversing (-1), or coasting (0). For Solid Rally, RE

is the number of waypoints the agent has driven through so
far, with a maximum possible score of 24 (8×3 laps). At each
time step, RB is calculated as per Eq. (4) as the change in
RE compared to the previous state (i.e. if the agent has just
driven through a waypoint), with an additional component:
the product of the agent’s speed (S) and inverted angle (A) to
the nearest checkpoint, normalised between 0 (facing away)

and 1 (facing directly toward). These additional components
encourage agents to drive fast and in the right direction.

RB = ∆RE + (S ·A) (4)

B. Affect Model

The game environments selected for the Affectively Frame-
work were originally built for the AGAIN dataset, where
each environment comes with over 122 human game sessions
annotated in a first-person manner in terms of arousal [4]. Our
framework uses the same affect model for all the environ-
ments, which is based on arousal transitions within the corpus
of human affect annotations in similar game-state transitions
as the ones encountered by the agent at this point. The affect
model is built using the k-nearest neighbours algorithm [14]
(KNN), with k = 5. We follow the same methodology for
deriving this affect model across all three games, based on
successful arousal modelling attempts when the dataset was
collected [4]. For each environment, every annotated play trace
is processed as consecutive 3-second time windows: each entry
contains the mean arousal value of that time window along
with a feature vector P⃗ of game-specific variables such as
car speed, player health, and current score. These variables P⃗
are used in AGAIN [4] and are different from the game-state
variables (St) described in Section II-A. We construct pairs
of consecutive time windows from these gameplay sessions,
and label affect in terms of decreasing, increasing, or stable
between the two time windows. As with previous studies [4],
we discard stable arousal data points from the corpus.

During execution, the affect model calculates the agent’s
current (and previous) feature vector P⃗ every 3 seconds of
in-game time (via averaging). It then queries the dataset for
the 5 nearest neighbours using an inverse-distance weighted
averaging (i.e., the closer the neighbour is to the current
state, the more influence it has on the output) as used in
previous studies [9]. This means that the model finds the
closest transitions (in terms of 3-second time windows) made
by humans in the corpus and produces a weighted average
of their arousal transition (increase or decrease) weighted by
the P⃗ distance. The result is a value between 0 (all agree
on decrease) and 1 (all agree on increase). We test the same
affect reward (RA) in all three environments, which is to
maximise arousal (rewarding state transitions that increase
arousal) generated by the KNN model at each time window.
It is important to note that since the model generates values
every 3 seconds, Afft = 0 for any time steps in between.

III. EXPERIMENTAL PROTOCOL

In this paper, we evaluate the Affectively Framework by
training RL agents to maximise in-game performance, arousal,
or a combination thereof. For each evaluation, we report the
final RE and the R̄A of their arousal trace taken at the end of
the session. We detail the baselines (random agent and human
demonstrations) and the RL agent that uses Proximal Policy
Optimisation (PPO) below:



TABLE II
RESULTS FOR RL AGENTS AND BASELINES TESTED ON THREE DIFFERENT REWARD FUNCTIONS, AVERAGED ACROSS 30 EVALUATION RUNS AND

INCLUDE THE 95% CONFIDENCE INTERVAL. BOLD RESULTS CORRESPOND TO THE BEST REWARD OBSERVED FOR EACH COLUMN.

Agent
Pirates Heist Solid Rally

Final RE R̄A Final RE R̄A Final RE R̄A

Random 0.080± 0.013 0.578± 0.019 0.027± 0.013 0.594± 0.027 0.007± 0.006 0.397± 0.013

Humans 0.476± 0.036 0.501± 0.038 0.461± 0.039 0.496± 0.036 0.795± 0.029 0.496± 0.038

PP
O

Max. Behaviour 0.278± 0.031 0.508± 0.016 0.108± 0.009 0.518± 0.021 0.413± 0.052 0.4157± 0.034

Blended 0.000± 0.000 0.827± 0.010 0.045± 0.002 0.581± 0.021 0.653± 0.052 0.385± 0.028

Max. Arousal 0.000± 0.000 0.863± 0.012 0.000± 0.000 0.850± 0.010 0.000± 0.000 0.592± 0.017

1) Random Agent: This baseline agent takes random ac-
tions by uniformly sampling the environment’s action space.
Results are averaged from 30 runs on the same environment.

2) Humans: We use humans from the AGAIN corpus as
a baseline to assess both their performance (in terms of in-
game score) and their arousal levels (in terms of increases or
decreases of their own annotation trace in 3-second consec-
utive time windows) throughout the gameplay session. The
human sessions are identical to the agents in terms of both
scoring and ending conditions (2 minute time limit).

3) PPO Agent: The PPO algorithm [7] is a very popular
RL algorithm implemented in the Stable Baselines (SB) library
[15]. This agent uses the default parameters provided by SB.
For each scenario, we train a single agent for 1 million time
steps, before evaluating them 30 times with exploration turned
off (i.e., always picking the best action). The agent is evaluated
using SB’s stochastic action prediction to sample actions from
the network. The PPO agents use three different rewards:

• Max. Behaviour which uses as reward Rt of Eq. (1) with
λ = 0, thus optimising only for RB . We expect this agent
to play only to win (i.e., maximise their RE).

• Max. Arousal which uses as reward Rt of Eq. (1) with
λ = 1, thus optimising only for RA. We expect this
agent to attempt to maximise the arousal score derived
from human examples, which may lead to unexpected
and uncontrollable behaviours.

• Blended which uses as reward Rt of Eq. (1) with λ =
0.5, optimising for RB and RA equally. This agent is
the most interesting, as it is expected to act in a more
human-like fashion, assuming a human plays to win and
to enjoy themselves (via an increased arousal state).

IV. RESULTS

Table II shows the final in-game score (RE) normalised
to [0, 1] based on the maximum possible score per game
(see Section II-A), as well as the R̄A for the PPO agents
and the baselines described in Section III. As expected, a
random agent is not capable of effectively playing any of the
three environments, achieving very low scores (RE) in all 30
evaluation runs. When it comes to affect, random agents did
not exhibit any consistent pattern across games: agents would
get stuck very quickly and generate the same arousal values
repeatedly until the end of the episode.

The PPO agents, even when rewarded only based on RB ,
played every game worse than the humans in the AGAIN
corpus and reached much lower final scores (RE). This can
be somewhat expected from the short training times. Heist
proved to be particularly challenging for the agent, likely
due to its complex action space (with 2 continuous actions)
and challenging gameplay (requiring both way-finding and
aiming). While the final scores of the RB-based agent were
approximately half those of the average human for Solid Rally
and Pirates, the agents’ behaviour was robust. However, for
Pirates the agent tended to rush to complete the level quickly
and sometimes ignore collectables, likely due to the (constant)
Mr component of RB in Eq. (2) that rewards moving right.
For Solid Rally, where moving forward quickly was the only
type of desired gameplay, this sufficed to perform well.

When PPO agents were trained to maximise arousal (RA),
the agents significantly improved their average arousal values,
surpassing the random agent and the human demonstrations
alike. However, the behaviour of these agents was very poor
across games (with RE = 0 in all 30 runs and all three
games). We observed that the agents would quickly find a
region of the environment close to the start with high arousal
and exploit that area, rather than explore the environment.
This illustrates the deceptive reward space when rewarding
affect alone. Using an RL agent which supports and rewards
exploration, such as Go-Explore [10], will likely improve this
PPO agent’s behaviour—as seen in previous studies [9].

PPO agents trained on blended reward showed an in-
consistent trend across game environments. In Solid Rally,
the blended agent managed to improve upon its final score
compared to the pure behaviour optimiser, but had the worst
arousal score. In this case, the behaviour reward overpowered
the affect reward given its richer and less deceptive nature. The
opposite was true in Pirates, which featured large increases
in arousal at the very start of the game. The affect reward
(RA) thus overpowered the behaviour reward (RB), leading
the agent to stay largely still—similar to the arousal optimising
PPO agent. Parsing the training data, we observed that the
agent initially explored deeper into the level, achieving the
best RE score of 0.106 in the first 50 episodes, but quickly
converged on exploiting the starting area of the level which
exhibits high arousal in the annotation traces. While we
observed a more balanced outcome (in terms of RE and RA)



in Heist, the agent performed poorly compared humans’ RE

and only marginally better than the random agent. We believe
that the game proved too difficult for the agent to learn an
effective policy within the limited training time provided.

V. DISCUSSION

Experiments with the built-in agents and reward systems
provided by the Affectively Framework highlighted the in-
herent challenge of optimising affect in gameplaying agents.
Affect, as derived from similar game state transitions in a
corpus of annotated human gameplay traces, can be both
deceptive and overpowering as an RL reward. In our results,
we found that balancing RA and RB in the blended reward
function is a significant challenge for RL algorithms such
as PPO, and requires more tuning. We acknowledge that a
major limitation is the sparsity of RA rewards, which are
provided once every 3 seconds (and are not triggered by a
specific in-game event apart from the game clock); this may
confuse the agent, especially for blended reward schemes.
Future work should explore alternatives, such as a moving
time window for deriving agents’ parameter vector to match
human demonstrations (see Section II-B), or copying the last
calculated RA reward into the reward scheme of Eq. (1).

Moreover, the size of AGAIN’s corpus allows us to find
more relevant neighbours for unseen game-state transitions
made by the agent. However, using only a subset of these
gameplay traces could lead to better behaviours. In our previ-
ous study on Solid Rally [9], clustering play traces into four
clusters allowed us to train more high-performing agents based
on expert players alone, using a blended reward. We plan to
enhance the Affectively Framework with pre-made clusters of
players as part of all three environments, so that future agents
can be trained with a particular target persona in mind (e.g.
imitate “Expert” behaviour and arousal).

A straightforward area for improvement is to expand the
current experiments with longer training times and hyper-
parameter tuning, in order to ensure optimal performance
of the PPO algorithm. More experiments with different RL
algorithms and affect rewards, especially in light of the poor
behaviour of PPO agents that maximise arousal, are necessary.
Leveraging the Affectively Framework for research into RL
agents in multiple games, including our previous work on
Go-Blend [9] in Solid Rally, is a major motivation for this
software release. Value-based RL algorithms, such as deep
RL [16], are also interesting additions to our baseline agents.
Due to the complexity of the action spaces (especially in
Heist), integrating deep RL would require some work. Finally,
an interesting direction for future research is to use a single
observation space (e.g. using the screen’s pixels) across games
to enable more in-depth studies on the generalisability of RL
agents.

VI. CONCLUSION

This paper introduced the Affectively Framework, a frame-
work compatible with the standard Open-AI Gym API [6]
for training game-playing agents that not only care about

behaviour but also affect. We introduced three game environ-
ments and tested them with two baseline agents (a random
agent and a PPO agent) in various behaviour and affect tasks.
By laying the groundwork for future research through an easy-
to-use software package and test bed environments, future
studies can shed light on the relationship between player
behaviour and their affect response during gameplay.
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