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Abstract—This paper describes a method for generative player
modeling and its application to the automatic testing of game
content using archetypal player models called procedural per-
sonas. Theoretically grounded in psychological decision theory,
procedural personas are implemented using a variation of Monte
Carlo Tree Search (MCTS) where the node selection criteria
are developed using evolutionary computation, replacing the
standard UCB1 criterion of MCTS. Using these personas we
demonstrate how generative player models can be applied to
a varied corpus of game levels and demonstrate how different
play styles can be enacted in each level. In short, we use
artificially intelligent personas to construct synthetic playtesters.
The proposed approach could be used as a tool for automatic play
testing when human feedback is not readily available or when
quick visualization of potential interactions is necessary. Possible
applications include interactive tools during game development or
procedural content generation systems where many evaluations
must be conducted within a short time span.

Index Terms—Player Modeling, Agent Controllers, Automated
Playtesting, Play Persona

I. INTRODUCTION

One of the challenges faced by game designers is predicting
how different players will interact with the the systems and
content that they are crafting. Most games are complex emer-
gent systems that allow for a variety of interaction patterns,
depending on the player’s preference(s) and the interaction
between player, game, and any other players. Game designers
employ a variety of processes to imagine and observe how
different types of players might respond to their content. The
processes can be thought of as existing on a spectrum, ranging
from the designer imagining what different types of players
might do, to analyzing play data of beta testers or a portion
of the player base in the case of continuously updated “live”
games. Each approach has different strengths, weaknesses and
costs, making it relevant for different game makers or different
stages of the game making process [1], [2].

In this paper we suggest and demonstrate a method taking a
new position on this spectrum (illustrated in Figure 1): using
archetypal generative player models as critics for game con-
tent, enabling automated playtesting and evaluation of game
content; here specifically levels. We identify this approach as
the use of Procedural Personas for Playtesting.

We evolve artificially intelligent game playing agents for
the game MiniDungeons 2 [3]. The agents, or personas, are
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Fig. 1: Spectrum from simple to complex design testing
methods in game development.

characterized by different utility functions for their decision-
making. These utility functions capture various archetypal
goals that players might hold in relation to the affordances
and potential interactions of the particular game. To control
the personas, we use a variant of Monte Carlo Tree Search
(MCTS) which is well-suited to building biased search trees
in large search spaces. However, rather than applying the
Upper Confidence Bound 1 applied to Trees (UCB1) formula
typically used for MCTS, we use genetic programming to
evolve persona-specific evaluation formulas. This allows us to
find mappings between persona utility functions and state eval-
uation algorithms. We evolve well-performing game-playing
agents for all defined personas through this variant of MCTS.

Using the evolved personas, we show how different levels
can be automatically evaluated in terms of their playability for
players holding different preferences. This approach can be
useful to game creators as it provides an insight into dynamic
properties [4] of their content as they are crafting the me-
chanics. For instance, such agents could eventually be added
directly to a game engine’s editor to allow for almost real-
time feedback during content creation. The approach can also
be used as an automated evaluation mechanism for procedural
content generation of game content, where procedural personas
can function as stand-ins for the game designer or different
players when large amounts of content have to be evaluated.

This paper builds on our previous work on MCTS agents
with hand-crafted utility scores for the MiniDungeons 2 game
[5], expanding on those concepts by broadening the number
and utility of personas (through human design) as well as
discovering UCB-like criteria (through evolution) which out-
perform UCB1. More broadly, this paper enhances our earlier
definitions of procedural personas [6]–[8] which were applied
for simulation-based level generation [9]. However, the MCTS
agents used in this paper are more modular in their utility
definitions and afford far faster runtimes when performing
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automated playtesting. Moreover, the MCTS agents in this
paper are tested on MiniDungeons 2, a far more complex game
than its predecessor MiniDungeons introduced in [6].

II. RELATED WORK

The approach taken in this paper draws on psychological
decision theory, persona theory from design research, and
player modeling and agent control from computational intel-
ligence. The procedural persona approach draws all of these
four strands of work together in one framework for automatic
playtesting in order to create generative player models that to
some extent decide and play like human players. This section
briefly covers some of the foundational areas before describing
prior work in bringing these approaches together.

A. Personas for Game Design

The use of computational methods to imbue computer game
characters with personality has been a focus of game AI
programming since the very beginning of the medium. As
one instance, Short provides an overview of how non-player
characters can be provided with human-like personalities under
the heading of procedural personalties [10].

The use of personas has a long history within design in
general and design for information technology in particular.
The approach was pioneered for software development in the
early 1990s [11] as a method for structuring and operational-
izing qualitative data gathered from design research, chiefly
in the form of interviews. Based off interview data, a number
of personas would be defined. Each of these would serve as
a specific instantiation of groups of user concerns that tended
to co-occur, expressed as an archetypal example user, fully
fleshed out with names, back stories, concerns and preferences.

Canossa and Drachen transported this approach into the
realm of game design [12], defining personas less in terms of
general life concerns and more in terms of player interaction
preferences within the space of the game. They call this new
conceptualization play personas and operationalized their defi-
nition through data mining, suggesting how the persona design
process could be supported by analyzing quantitative game
data gathered via telemetrics [13]. While play personas are
archetypal models of player behavior inferred from experience
or observed data, the re-projection into the game itself is
something that is done imaginatively by the designer(s) of
the game: i.e. play personas let us understand what players
have done, but do not enact what players might do. Procedural
personas [6], [8], [14] extend the play persona idea by adding
a game-playing, generative aspect. By capturing persona char-
acteristics from designer specification or from observed data,
and formalizing these as utility functions, procedural personas
are implemented as agents that can act in the game, enabling
automatic playtesting.

Other work in the literature has investigated game testing
without natural player data, notably [15]. The approach taken
here differs from the approach taken in [15] as it focuses on
generating data from simulated players, rather than taking into
account a larger number of potential metrics where some are

not centered on player actions. As such, the procedural persona
concept is a specialized case of player modeling.

The line of work leading to this paper has been inspired by
the category of “Generative Action Models” in the survey on
player modeling by [16]. Until recently, this particular category
has been underpopulated.

B. Player Modeling

Player modeling is the learning and use of computational
models of player preference, experience and/or behavior [17].
Procedural personas, as generative player models, cover some
of these aspects: behavior and preferences. Other work in
player modeling take different approaches to modeling play
behavior and preference generatively. Perhaps the most ob-
vious approach is to use some form of supervised learning
to derive a model from play traces [18], [19]. Cowley et al.
developed the concept of behavlets, features of play derived
from observed action sequences, structured through a top-
down application of psychological temperament theory com-
bined with machine learning [20]. While behavlets can be used
as generative models, they do not allow for the specification
of player motivations without observations. In contrast, proce-
dural personas are driven by utility functions that can be either
specified in a top-down manner by game or persona designers
or formulated from play data through methods like inverse
reinforcement learning [21] or evolution [14]. The particular
agent control method that is used to formulate a policy for
procedural personas is technically arbitrary, as long as it can
accept a utility function as a method of evaluation. The most
appropriate method may depend on the game for which the
personas are being implemented. Prior work has shown that
evolutionary methods and MCTS have potential for defining
personas for turn based roguelike games [5], [7], [14].

Devlin et al. showed how observations of human play data
can be used to bias MCTS to play the card game Spades [22].
They use a relative entropy measure to assess the similarity of
playing styles to traces of human players. Zook et al. limited
the computational resources of MCTS to simulate player
skill for a number of games [23] and similar findings were
reported by Nelson et al. [24]. Another approach to biasing
the MCTS search process to be more similar to human players
is described by Khalifa et al. [25]. In the study described
here, we take a similar approach and implement a variation of
MCTS. We bias the search using evolution applying designer-
defined utility outcomes as the fitness function.

III. MONTE CARLO TREE SEARCH

MCTS has shown considerable potential and flexibility as
a game-playing algorithm [26]. For our purposes, MCTS has
several desirable properties which approximate how decision
making occurs in humans: it evaluates the next best action
based on a utility score for a predicted future state and operates
under uncertainty of future outcomes. It also seems that by
giving an MCTS algorithm more or less resources, you can
simulate strategic depth in human decision-making [23], [24].
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A. Traditional MCTS

As discussed in Section I, MCTS is a tree search algorithm
which creates biased search trees for decision processes.
Unlike other tree search algorithms like Minimax, breadth-
first, or depth-first, MCTS focuses on exploiting the most
promising moves to expand next, while balancing that by
exploring more neglected branches of the tree. The balance of
exploitation versus exploration is traditionally handled through
the evaluation of the Upper Confidence Bound for Trees
equation, which applies UCB1 to the tree [26]. The tree is built
incrementally, with each iteration following a simple formula:

1. Selection: MCTS chooses the next node to expand via the
tree policy, starting at the root node and recursively picking
the highest scoring child “until the most urgent expandable
node is reached” [26] or a terminal state (i.e. the game is won
or lost). The score for traversing the tree in MCTS is termed
tree policy, and in traditional MCTS approaches it is given by
the Upper Confidence Bound (UCB1) equation:

UCB =
wi

ni
+ c·

√
ln(t)

ni
(1)

where wi is the number of wins which originate from taking
move i, ni is the times move i was visited, c is the exploration
constant. It is typically chosen that c =

√
2, since this value

has been shown to guarantee convergence to a value function
within finite time for single-player games terminal states and
rewards bounded to the range [0, 1] [26]. t is the total number
of simulations for the node considered and is equivalent to
the sum of all ni for all possible moves. The UCB1 equation
attempts to balance exploration (looking into paths not yet
simulated) and exploitation (looking into paths previously
simulated that show good results).

2. Expansion: unless the selected node is a terminal state
(i.e. the game is over), a child node (W ) is created for the
next action. Typically, this next action is randomly selected
from all possible future actions.

3. Simulation: the default policy is used to simulate a
random rollout from W . The rollout consists of performing
actions at random until the game reaches a terminal state, or
up to a fixed number of moves.

4. Backpropagation: the result (i.e. utility score) of the
simulation is backpropagated to every node, from the expanded
W to the root node. This affects future policy decisions, i.e.
future selection steps.

These four steps are applied sequentially until the compu-
tational resources allocated for the agent’s move are depleted.
The agent then chooses the next move (i.e. the child of the
root node) with the highest utility score.

B. Evolutionary Tree Policy

As discussed in Section III-A, selection in MCTS must
balance between exploitation and exploration; UCB1 is tradi-
tionally used to maintain this balance. Changes to the UCB1
formula of eq. 1 are typically done in order to optimize
it for a certain kind of game or to weigh certain kinds of
game-play differently [25]. Cazenave’s work [27] on evolving
UCB1 alternatives for Go MCTS agents demonstrated that

the resulting agent significantly outperformed peers that used
traditional UCB equations, or even agents that used UCB1
alternatives specifically created for Go. In the General Video
Game AI (GVGAI) framework, Bravi et al. explored the
possibility of evolving UCB1 replacements that were not
specialized for one particular game [28]. In this work, we use
the approach of Bravi et al. not to specialize the agent for
particular games, but to bias its playstyle.

IV. THE MINIDUNGEONS 2 GAME

MiniDungeons 2 is a deterministic, turn-based rogue-like
game, first described in [3], in which the player takes on the
role of a hero traversing a dungeon level, with the end goal of
reaching the exit. The game stage is set on a 10 by 20 tile grid.
Each tile is either an impassible wall or a passable floor. Floor
tiles may contain objects that the hero can interact with, game
characters such as the hero or non-player characters (NPCs), or
nothing at all. Gameplay objects come in several varieties such
as treasures, potions, portals, traps, and the exit of the level.
To win, the player must reach the exit. All game characters
have Hit Points (HP) and may deal damage. The player starts
with 10 HP; the player loses when they run out of HP and die.
Movement within the game is fairly simple. The player gets
the first move every turn, and all NPCs move after. The NPCs
move in turn according to their original position on the map,
starting from the top left corner and moving row-wise left-
to-right until the bottom right corner is reached. This initial
move sequence is retained even if NPCs later move to other
locations. On their turn, a game character may move in one
of the four cardinal directions (North, South, East, West) so
long as the tile in that direction is not a wall. The player is
given one re-usable javelin at the start of every level. The
player may choose to throw this javelin and do 1 damage to
any monster within their unbroken line of sight. After using
the javelin, the hero must traverse to the tile to which it was
thrown in order to pick it up and use it again. A map contains
many different objects the player can collide with. Different
objects have different effects:

• Potions are used to increase the HP of the hero by 1, up
to the maximum of 10. When collided with by either the
hero or blobs, they are consumed and may not be re-used.

• Treasures are used to increase the treasure score of the
hero. When collided with by either the hero or ogres, they
are consumed and may not be re-used.

• Portals come in pairs. If the hero collides with a portal,
they are immediately (on the same turn) transported to
the other paired portal.

• Traps deal 1 damage to any game character moving
through them, every time.

While exploring a map, the hero may come across a variety
of monsters, some of which have secondary goals in addition
to attacking the player.

• Goblins (or Melee Goblins) move 1 tile every turn
towards the player if they have an unbroken line of sight
to the player. They have 1 HP and deal 1 damage upon
collision. Goblins avoid colliding with other goblins and
goblin wizards.
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• Goblin Wizards (or Ranged Goblins) cast a spell at the
hero if they have an unbroken line of sight within 5 tiles
of the player that does 1 damage. If they are over 5 tiles
from the player but have line of sight, they will move 1
tile towards the player. Wizards have 1 HP and deal no
damage on collision.

• Blobs do not move unless they have unbroken line of
sight with either a potion or the hero. If they see either
one, they will move 1 tile towards the closest one per turn,
preferring potions over the hero in case of a tie. A blob
colliding with a potion consumes it. Blobs colliding with
other blobs merge into a more powerful blob. The lowest
level blob has 1 HP and does 1 damage upon collision.
The 2nd level blob has 2 HP and does 2 damage. The
most powerful blob has 3 HP and does 3 damage.

• Ogres also do not move unless they have unbroken line
of sight with either a treasure or the hero. If they see
either one, they will move 1 tile towards the closest per
turn, preferring treasures over the hero in case of a tie.
When an ogre collides with a treasure, they consume it,
and their sprite becomes fancier to look at. Ogres have
2 HP and deal 2 damage to anything they collide with,
including other ogres.

• Minitaurs always move 1 step along the shortest path to
the hero as determined by A* search, regardless of line of
sight. Collision with the minitaur will deal 1 damage. A
minitaur has no HP and is incapable of dying. If damage
is done to it, the minitaur will be knocked out for 3 rounds
(and can be passed through).

The game is technically infinite with all current maps as
they all contain areas where the player might move back and
forth, continuously dealing with the Minitaur using the Javelin.
However, in practice most maps are finished in 20-30 moves
with goal directed play. The branching factor is estimated to
3.41 across the included maps [3], but depends on the map.

V. PROCEDURAL PERSONAS IN MINIDUNGEONS 2

We identified four player archetypes which will become
our procedural personas. These personas prioritize different
interactions with the game and were defined from the four
primary objects in the game. The following four archetypes
were defined based on our design experience and intuition:

• Runner aims to reach the exit.
• Monster Killer wants to kill monsters.
• Treasure Collector desires to collect treasure.
• Completionist attempts to consume any game object that

can be collected or killed (monsters, potions, treasures).
Apart from the Completionist, these personas have been also
featured in previous attempts at modeling personas via MCTS
[3] or in the simpler MiniDungeons game [6], [7]. Since
the types of interactions with the game world are limited,
these four single-minded personas capture a large part of the
potential play space in MiniDungeons 2.

The personas all use MCTS to formulate a sequence of ac-
tions for play. Because MiniDungeons 2 is fully deterministic,
each persona only builds one tree per map. It will immediately
cease construction once a winning terminal state is discovered

TABLE I: Gameplay metrics used as variables combined in
the evolving equation trees, and their notation.

Steps Taken (ST) Proximity to Exit (PE)
Potions Drunk (PD) Treasures Opened (TO)
Minitaur Knockouts (MTK) Monsters Slain (MS)
Javelins Thrown (JT) Health Left (HL)
Teleports Used (TU) Traps Spring (TS)
Average MCTS reward (R̄) Interactive Objects Consumed (IC)

or it reaches timeout, wherein it will take the best sequence of
actions it discovered. On average, trees will contain between
two and five million nodes.

A. Utility Formation

The four personas of MiniDungeons 2 are defined by their
primary and secondary objectives, which calculate a move’s
utility score at the end of a simulation phase and is back-
propagated to the rest of the tree in the next phase (see
Section III-A). From preliminary experiments, it seems that
MiniDungeons 2 maps are frequently too complex and long
for MCTS to simulate rollouts to a terminal state, as games
can become infinite if the hero moves back and forth in place.
Therefore, in the rollout stage, our agents simulate 10 random
moves before back-propagating the utility score. The different
personas use metrics collected from the game’s state after 10
random moves: Table 1 describes the variable metrics used in
this paper. Note that for PD, MS, TO, and IC the values
represent the ratio out of all potions, monsters, treasures, and
all non-monster game objects in the map, respectively.

Runner (R) has the primary objective of finding the exit in
the fewest moves possible.

UR =

{
PE − 0.01 · ST if hero is alive
PE − 0.01 · ST − 5 if hero is dead

(2)

Monster Killer (MK) has the primary objective of killing
as many monsters as possible with the secondary objective of
finding the exit.

UMK =

{
0.7 ·MS + 0.3 · PE if hero is alive
0.7 ·MS + 0.3 · PE − 5 if hero is dead

(3)

Treasure Collector (TC) has the primary objective of
consuming as much treasure as possible with the secondary
objective of finding the exit.

UTC =

{
0.7 · TO + 0.3 · PE if hero is alive
0.7 · TO + 0.3 · PE − 5 if hero is dead

(4)

Completionist (C) has the primary objective of consuming
as many potions and treasures, and killing as many monsters as
possible (thus “completing” a map), along with the secondary
objective of reaching the exit.

UC =

{
0.7 · IC + 0.3 · PE if hero is alive
0.7 · IC + 0.3 · PE − 5 if hero is dead

(5)

By studying how these personas traverse the game’s maps, we
can better evaluate how players will interact with the game.
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B. Evolving the Policy of Personas

Genetic programming is used to evolve the mathematical
formula that replaces UCB1. The Evolute C# source code1 was
modified to work as follows: The chromosome representation
is a syntax tree where all nodes contain a binary operation
and all leaves contain a variable or a constant. The four
binary functions are addition, subtraction, multiplication, and
division. Constant values are uniformly, randomly generated
floats within [−1, 1]. Variable values are derived from the
game-play metrics described in Table I. The generator takes
these variables and constant numbers and initializes equation
trees with them, with an initial minimum depth of 2 and
maximum of 5. During evolution, the maximum depth of a
tree is set to 8 to avoid extremely long equations. This means
that a equation can have as many as 28 (i.e. 256) elements.

Each persona has its own utility function, as per Eqs. (2–
5), which evaluates the result to be back-propagated after the
simulation step of MCTS. To test the candidate function, the
UCB equation is completely replaced by the candidate as
the tree policy. The agents are evaluated based on a fitness
function calculated at the end of each playthrough, i.e. when
the hero has reached the exit, when the hero is killed, or after
a maximum allocated time has passed. Each persona uses the
same fitness as the utility score (e.g. fMK = UMK) calculated
at the end of the playthrough. E.g. for the Monster Killer the
fitness fMK evaluates how many monsters it killed in total in
this map, how close it ended to the exit (PE = 0 if the exit
was reached), and whether the playthrough ended because the
hero was killed (which applies a penalty to the fitness).

Since MiniDungeons 2 maps can combine interactive tiles
and monsters in many different ways, the fitness of each
individual is based on their utility in different maps. Evolving
agents are tested on maps 1, 2, 3, 4, 7, and 10 of Fig. 2: these
maps capture many different playstyle patterns of MiniDun-
geons 2. The overall fitness of a chromosome is calculated by
averaging its fitness across all playthroughs in these six maps.
This averaged fitness score was then used to select genes (i.e.
UCB1 replacement functions) for recombination, mutation and
replacement.

The initial population of 100 individuals is created via
the initialization process described above. Evolution uses an
islands model [29] with 5 islands. Migration occurs in every
generation. After migration, the five fittest individuals of each
island are selected and placed into that island’s mating pool.
Based on preliminary experiments, elitism was set to 15%
of the population. Before crossover, all individuals in the
mating pool have a 10% chance of mutating. Mutation replaces
the chromosome with a random chromosome via the same
initialization process described above. After mutation, the
mating pool undergoes crossover: two random chromosomes
from the mating pool are crossed-over to create two offspring,
formed by exchanging randomly selected sub-trees between
the parents. During crossover, every individual in the mating
pool has an equal chance to be selected, regardless of fitness.
After this process is repeated for every island, a new popula-
tion is generated and evaluated for fitness.

1http://evolute-csharp.sourceforge.net

VI. EXPERIMENTS

The purpose of evolving UCB1 replacement functions is to
optimize the agents’ behavior relative to the persona-defining
utility function. Below, we describe the results of evolving the
agents, comparing them with the standard UCB1 function and
using the evolved agents to playtest maps.

A. Experimental Protocol

For the purposes of evolving the four agents’ tree policy
equations, six maps are played by the agent and the fitness
score is calculated as described in Section V-B. However, for
evaluating the agents’ performance a broader set of maps is
used: all 11 maps of Fig. 2 are tested in Sections VI-C and
VI-D. To cater for the stochastic nature of MCTS, each map is
simulated in 50 trials by each agent. To cater for the stochastic
nature of evolutionary algorithms, 3 independent evolutionary
runs of 100 generations are performed with a population of
100 individuals, following the process described in V-B. The
best performing run (based on the persona’s core priority, e.g.
monsters killed for the Monster Killer) is chosen among the
three evolutionary runs and reported here.

For the purposes of assessing the performance of evolved
personas, baseline MCTS agents using the UCB1 tree policy
of Eq. 1 are used to simulate the 11 maps in 50 trials each.
Each baseline persona uses UCB1 for its tree policy but then
backpropagates the persona-specific utility of Eqs. (2-5) after
each simulation. All reported significance testing is performed
through Student’s two-tailed t-tests, assuming unequal vari-
ance, with an error of 5%; when comparing between maps, the
50 playthroughs of each persona are tested for significance.
Otherwise, 95% confidence intervals are calculated via the
standard deviation of all playthroughs in all maps.

B. Persona Evolution

For all personas, fitness starts converging after approx-
imately 20 generations and from then on improves only
marginally. The best evolved tree policy equation for each
persona in its raw form often has duplicate variables and can
be simplified. We simplified each of the fittest equations at
the end of 100 generations and list them as eq. (6–9). Some
of these equations are quite convoluted but some interesting
patterns can be gleaned. The tree policy for the Runner in
eq. (6) strongly prioritizes the proximity to the exit variable
but also has a negative factor for health left (i.e. it actively
prefers reaching the exit with low health). The tree policy for
the Monster Killer in eq. (7) aggressively prioritizes monsters
slain and proximity to the exit as these variables are multiplied
to any other metric; interestingly this tree policy is the only
one among eq. (6–9) which does not include R (the average
reward). The tree policy for the Treasure Collector in eq. (8) is
the only linear equation (a weighted sum) which includes an
added 0.19 constant which obviously does not affect the tree
policy as it is added to all possible moves. More interestingly,
the Treasure Collector policy puts more weight on potions
drunk and monsters slain (2 for each) rather than on treasures
opened (weight of 1). The Completionist has the most complex
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(a) Map 1 (b) Map 2 (c) Map 3 (d) Map 4 (e) Map 5 (f) Map 6 (g) Map 7 (h) Map 8 (i) Map 9 (j) Map 10 (k) Map 11

Fig. 2: All 11 maps in the MiniDungeons 2 game.

TABLE II: Average scores in several game metrics for evolved
and baseline personas. Results are averaged from 50 indepen-
dent playthroughs of the best personas in each of the 11 maps.
Results include the 95% confidence interval.

Metric R MK TC C
Evolved
Monsters 46%±2% 67%±2% 59%±2% 66%±3%
Potions 8%±1% 4%±1% 25%±2% 8%±1%
Treasures 10%±1% 7%±1% 35%±2% 10%±1%
Interactive Objects 25%±1% 33%±1% 41%±1% 34%±1%
Win Rate 100%±0% 73%±4% 54%±4% 100%±0%
Time (sec) 3.2±0.3 83±11 151±12 8.1±1.2
Baseline
Monsters 25%±1% 29%±1% 25%±1% 28%±0%
Potions 5%±1% 5%±1% 6%±1% 5%±0%
Treasures 5%±1% 5%±1% 17%±2% 6%±0%
Interactive Objects 13%±1% 16%±1% 19%±1% 15%±0%
Win Rate 10%±3% 12%±3% 9%±2% 13%±0%
Time (sec) 277±6 285±4 279±5 278±0

tree policy in eq. (9). It puts a surprising emphasis on steps
taken (multiplied to most components), monsters slain and
proximity to exit (despite the fact that it also subtracts PE);
most surprisingly, it only includes treasures opened (TO) once
and with a negative weight, meaning that it actively tries to
reduce the number of treasures opened despite the fact that
the utility (and fitness) of eq. (5) actively rewards treasures as
a member of the interactive objects set.

tR =6.235·ST ·PE2·(PE + 1) +R·(1−HL) (6)
tMK =4·MS·PE·(MS + 2·HL·(PE − IC)) (7)
tTC =2·PD + 2·MS + TO

+ 3·R+ ST + PE + 0.19 (8)

tC =ST ·MS·(ST 2·MS + IC) +R− TO + IC

− PE + 2·ST ·PE·(ST ·MS·+ 1) (9)

C. Comparing Personas

It is not sufficient to assess the evolved personas based
on their fitness scores alone. This section tests the final best
personas based on what types of content they interact with
in all the maps of MiniDungeons 2. The focus is on com-
parisons with UCB1 MCTS personas (as baselines) regarding
agents’ efficiency in achieving their core priorities, but also
on comparisons between different personas’ play behavior.

1) Overall Performance: Table II shows the ratio of game
objects each agent has interacted with (i.e. monsters, potions,
treasures) on average in the 11 testbed maps of MiniDungeons

2. At a high level, the Monster Killer kills more monsters on
average than the other personas, while the Treasure Collector
collects more treasure and drinks more potions. A more
detailed analysis in Section VI-C3 will shed more light on the
differences between personas, as there are substantial devia-
tions between maps. Table II includes the win rate of different
personas (i.e. instances where the agent reached the exit), as
well as computation time to find a path (up to a maximum
of 300 seconds). The evolved Runner persona is consistently
able to reach the exit in all maps, and does so in far fewer
steps and requiring far less computational time than all other
personas, both evolved and baseline MCTS. Surprisingly, the
evolved Completionist persona also completes all maps in
all trials, despite the fact that it prioritizes interacting with
as many game objects as possible; perhaps due to the latter
strategy its computational time is double that of the evolved
Runner. Since the Treasure Collector does not receive a large
reward for finishing the level, it tends to roam around the
map attempting to collect all treasures, and does not finish
before a maximum allocated time in 46% of all trials. The
Monster Killer has a similarly low reward for finishing the
level, however it only roams around certain maps until the
allocated time runs out (27% of all trials). It should be noted
that the computation time is averaged from all playthroughs
regardless of whether the agent reached the exit: if only won
playthroughs are considered, the average computation time of
the evolved Monster Killer (2.06 sec) is the lowest of all
other evolved personas, while that of the evolved Treasure
Collector remains high (at 23 sec). That said, considering only
computation time of won games these values are still better
than those of the baseline MCTS Runner (71 sec), Monster
Killer (167 sec) and Completionist (133 sec); only the baseline
Treasure Collector is relatively close (72 sec) to its evolved
counterpart but it only wins in one map (map 8). Comparisons
between baseline and evolved agents in the remaining game
metrics of Table II will be detailed in Section VI-C2.

2) Differences from the Baseline: For the purposes of com-
parisons between evolved and baseline personas, the results of
Table II are too noisy due to the sensitivity of persona behavior
in different maps of MiniDungeons 2. For a more thorough
comparison, Table III compares the number of maps (out of
11) in which the different metrics are significantly higher for
the evolved persona than the baseline persona of the same type
(E), or significantly lower (B). Significance is tested via two-
tailed Student’s t-tests (p < 5%) comparing 50 playthroughs
of each map per persona (evolved or baseline).
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TABLE III: Maps in which the shown metrics are significantly
higher for the evolved persona (E) than the baseline persona
of the same type, and maps in which the reverse is true (B).

R MK TC C
Metric E B E B E B E B
Monster Ratio 8 1 10 0 10 1 10 0
Potion Ratio 2 0 2 1 8 1 2 0
Treasure Ratio 3 2 2 5 7 1 3 3
Interactive Objects Ratio 9 1 10 0 10 1 10 0
Time (sec) 0 11 0 11 0 10 0 11
Win Rate 10 0 7 0 7 0 10 0

Table III shows that evolved personas score significantly
higher (or lower, for computation time) in the different metrics
in more maps than their baseline counterparts. A notable ex-
ception is the treasure ratio for the Runner, Monster Killer, and
Completionist, as the MCTS personas collect more treasure in
a comparable number of maps; however, these baseline MCTS
agents do not complete the level in far more cases. Especially
regarding win rates, the evolved personas are always superior
(or at least not inferior) in all maps and for all personas. In
comparison, baseline personas need more computational time
and do not finish a level far more often as shown by their win
rates in Table II (less than 15% for all personas).

3) Differences among Personas: Due to the large differ-
ences between MiniDungeons 2 maps in the different metrics
of Table II, to compare whether (and how) the procedural
personas play the game differently we evaluate the number
of maps in which one persona has a significantly higher
value for one metric than another persona. This comparison is
summarized in Table IV; significant differences are established
from a t-test (p < 5%) between 50 playthroughs of each
persona in one map. We are interested in seeing whether the
evolved personas, which have been shown to be more efficient
and robust at gameplaying, still maintain differentiation in
those game metrics that make them unique (e.g. a Monster
Killer persona should kill more monsters than other personas).

Analyzing the general differences between the evolved
Monster Killer and other evolved personas in Table IV, we see
that its killed monsters ratio is higher for this persona; no other
persona has a higher ratio in any map. The evolved Treasure
Collector collects significantly more treasure in most maps (8
or 9 out of 11); the baseline Treasure Collector is close but is
not superior from other baseline personas in as many maps.
Interestingly, the evolved Completionist is underperforming
in all relevant metrics compared to the Treasure Collector: it
interacts with more game objects only in 1 map (the Treasure
Collector has more interactive objects in 8 maps) and generally
drinks fewer potions and collects less treasure.

It is therefore obvious from Table IV that the Completionist
is inferior to the Treasure Collector apart from the fact that
it kills more monsters in two maps. This is surprising due to
the fact that this persona explicitly rewarded a high interactive
objects ratio in the fitness for deciding its tree policy, and when
scoring the default policy. On the other hand, the evolved
Completionist persona is the only persona apart from the
Runner which wins all 50 playthroughs in all 11 maps while
still interacting with more game objects (primarily monsters)

TABLE IV: Maps in which the shown metrics are significantly
higher for the persona on the row than in the persona in the
column.

Evolved Baseline
R MK TC C R MK TC C

Monster Ratio
R — 0 3 1 R — 0 1 0
MK 8 — 6 3 MK 5 — 5 2
TC 7 3 — 3 TC 2 1 — 1
C 8 2 6 — C 3 0 2 —
Potion Ratio
R — 2 1 0 R — 0 1 0
MK 1 — 0 1 MK 0 — 1 0
TC 8 8 — 8 TC 3 3 — 3
C 0 2 1 — C 0 0 1 —
Treasure Ratio
R — 3 0 0 R — 1 0 1
MK 0 — 0 0 MK 2 — 0 0
TC 9 9 — 8 TC 6 7 — 6
C 2 3 0 — C 1 0 0 —
Interactive Object Ratio
R — 3 1 1 R — 0 0 0
MK 6 — 1 2 MK 4 — 0 1
TC 9 8 — 8 TC 6 5 — 6
C 8 4 1 — C 2 0 0 —
Time
R — 2 0 1 R — 0 0 2
MK 3 — 1 3 MK 1 — 1 3
TC 11 10 — 10 TC 2 1 — 2
C 6 4 0 — C 1 0 1 —
Win Rate
R — 3 7 0 R — 0 1 0
MK 0 — 4 0 MK 1 — 1 0
TC 0 1 — 0 TC 0 0 — 0
C 0 3 7 — C 1 1 1 —

than the Runner. Even the baseline Completionist persona has
a high win rate compared to the baseline Runner (see Table II
while other baseline personas interact with more objects. It is
our assumption that using the interactive objects ratio for the
utility score (and one would assume as a fitness) creates an
imbalance between interacting with an object and approaching
the exit. For instance, most maps have 5 to 8 treasure tiles and
thus a Treasure Collector would have a higher utility gain by
collecting a couple during a playthrough rather than by getting
a few steps closer to the exit; instead, when maps have around
20 interactive objects then a completionist interacting with a
couple of them will have a lower utility gain than approaching
the exit. Completionist agents thus favor reaching the exit,
although not as aggressively as the the Runner as there is
some reward (however slight) for deviating from the path.

D. Evaluating Levels with Personas

Procedural personas can be used for many different pur-
poses, such as modeling players based on the similarity of
players’ actions with a persona’s action [8]. However, personas
can also be used to evaluate game levels by creating artificial
playtraces; this can be used as feedback to a human designer
when procedural personas test an authored level, but also as
a way to improve computer generated levels in a search-
based approach driven by the artificial playtraces of personas
in similuations [9]. In this paper, the former approach is
followed and we evaluate which patterns of game levels affect
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Fig. 3: Number of interactive objects in MD2 maps.

the performance of different personas. We will only use the
evolved personas, as they are overall superior.

In order to first identify what the differences are between
levels, Fig. 3 shows the number of interactive objects (i.e. po-
tions, treasure, and the different types of monsters) contained
in each map used in this analysis. Obviously, some maps have
fewer interactive objects (map 1, map 9), and some maps have
more potions and few treasures (e.g. map 5) or vice versa
(e.g. map 9). There are also many differences in the types of
monsters favored; while all maps include at least one minitaur
(map 2 has two of them), some maps do not include ogres
(map 1, map 9) and some maps have more ranged goblin
enemies than melee goblin enemies (e.g. map 4, map 10)
or vice versa (e.g. map 1). It should be noted that besides
interactive objects, these maps differ in terms of other types of
tiles, e.g. seven maps contain a set of portals allowing shortcuts
through the level, while six maps contain one or more traps
which deal damage when the tile is visited.

A broad range of metrics on the levels’ structure alone
(before simulation) were collected from the 11 maps of
MiniDungeons 2. These include the number of interactive
objects of Fig. 3, the number of portals and traps, the number
of wall tiles, choke points and dead ends (tiles with only
two or one connected passable tiles, respectively), length of
the shortest path between entrance and exit and many others.
The metrics of all maps were then analyzed in terms of their
correlations with the performance of each persona in the same
map. For the sake of brevity, only correlations with each
persona’s win rate and core priority will be discussed: i.e. for
the Runner computation time is the core priority, treasure ratio
for Treasure Collector, monster ratio for Monster Killer and
interactive object ratio for Completionist. While many of the
level metrics were found to be correlated with these persona
metrics, due the small sample size (11 maps) only a handful of
significant correlations were found (p < 0.05 of the Pearson’s
correlation coefficient, which is also reported as r) .

For the Runner, computation time was significantly corre-
lated with the length of the shortest path between entrance
and exit (r = 0.71). This is not surprising, since the Runner is
efficient at finding a short route to the exit and thus requires
less computation time if the exit is nearby. For the Treasure
Collector, the ratio of collected treasures has a significant
negative correlation with the number of walls (r = −0.69)
and a significant positive correlation with the number of open

Monster Ratio
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Fig. 4: Metrics of different personas in the same map.

areas (r = 0.63); open areas are tiles where all adjacent tiles
are non-walls, thus it is not surprising that walls and open areas
have opposite effects. It seems that the Treasure Collector is
less able to handle winding corridors. The win ratio of the
Treasure Collector persona has a significant negative correla-
tion with the shortest path length to the exit (r = −0.62), again
pointing at this persona’s poor performance in winding maze-
like corridors. While no significant correlations were found for
the Monster Killer, the Completionist’s interactive object ratio
is negatively correlated with the number of treasures in the
map (r = −0.65). This is not surprising as the Completionist’s
evolved tree policy in eq. (9) actively discourages opening
treasure chests, so the more of those there are in the map the
fewer the Completionist’s interactions with game objects.

In order to see how the maps’ layout can affect the diversity
of playthroughs among personas, we choose two indicative
maps to analyze; map 6 which has the most (significant)
differences in all possible pairs of personas and for all metrics
of Table IV, and map 8 which has the fewest differences. The
values of these metrics for different personas in each map are
shown in Fig. 4, averaged from 50 playthroughs.

In map 6, the Runner and Completionist reach the exit in all
playthroughs while the Monster Killer and Treasure Collector
never reach the exit as their computation time consistently
reaches the timeout limit of 300 sec. Surprisingly, the Treasure
Collector kills more monsters (66%), collects more treasure
(38%), drinks more potions (36%) and generally interacts with
more game objects (49%) than all other personas. The Runner
persona manages to collect more treasure (15%) than both
the Monster Killer (0%) and the Completionist (14%). The
Completionist has the second highest interactive object ratio
(32%). Based on the heatmaps of Fig. 5, the Monster Killer
and Treasure Collector are shown to roam around the map
and then get blocked from taking a decision until the 300
sec timeout. The Runner and Completionist on the other hand
follow a similar path to the exit (top right) which is actually
the shortest path. Only the Treasure Collector gets the two
unguarded treasures next to the entrance (bottom left), while
the wounded Monster Killer (due to combat with the ogre and
two blobs) ignores both unguarded potions along its path in
Fig. 5b. Interestingly, no persona uses the portal.

In map 8, all personas reach the exit in all playthroughs
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Fig. 5: Heatmaps of persona behavior in map 6.
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Fig. 6: Heatmaps of persona behavior in map 8.

with minimal computational time, and generally their other
metrics are also similar. Again the monsters killed across 50
playthroughs are lower for the Monster Killer (11%), than
for the Treasure Collector (19%) and slightly lower than the
Completionist (12%). All personas drink no potions and collect
one treasure (which is mandatory in order to reach the exit
as shown in Fig. 6); therefore the difference in interactive
object ratio is solely due to more monsters killed by the
Treasure Collector. It is worth noting that Fig. 6c shows
how the Treasure Collector may spend more time roaming
around the map. On average, the Treasure Collector needs
more computation time (2.8 sec) than the Monster Killer and
Runner (0.8 sec for both). Indeed, the Treasure Collector takes
on average 11.6 actions (the Runner takes 8, the Monster Killer
9 and the Completionist 9.2). This persona’s behavior differs
from playthrough to playthrough: in the one shown in Fig. 6c,
the Treasure Collector took 23 actions and killed 5 monsters,
which simply walked towards the agent (without the agent
needing to explore the map).

Finally, it would be interesting to see if there are maps
which are “preferred” by all personas. Using the priorities
mentioned above (lowest computation time for Runner, highest
treasure ratio for Treasure Collector, highest monster ratio for
Monster Killer and highest interactive object ratio for Com-
pletionist), we find that the best map for the Monster Killer is
map 9, in which it kills all monsters in all playthroughs, and
the worst is map 8. Map 8 is also deemed the worst by the
Completionist, while map 1 is deemed the best. In contrast,
map 8 is deemed the best for the Runner, and map 1 the worst.

For the Treasure Collector map 5 is the best and map 10 is the
worst. It is telling that often the worst map for one persona is
the best for another, pointing to the fact that different priorities
combined with different behaviors to achieve those priorities
can saturate how each persona assesses the maps.

VII. DISCUSSION

The experiments of Section VI demonstrated that the
evolved personas were able to play the game more efficiently
—requiring less computational time— than the baseline UCB1
agents, and were more robust in completing each map by
reaching the exit. Despite being efficient in completing most
levels (or all levels in the case of the Runner and Completion-
ist), the evolved personas still differentiate their playstyle and
in most maps perform better than other personas with regard
to their core priority. The exception is the Completionist,
which seems to be an inferior form of the Treasure Collector;
however this persona has an important benefit in that it
completes all the levels consistently while performing more
interactions than the Runner. Looking at the effect that each
map of MiniDungeons 2 had on each persona, we identify
that different personas are sensitive to different level patterns.
Such findings could influence the level design or game design
of MiniDungeons 2 (i.e. creating more open areas and fewer
winding corridors), or lead to a re-design of the fitness or
utility functions e.g. as we find that treasures are not favored
by Completionists. Finally, in most cases results differ in terms
of which map from the set is best or worst for each persona
according to their priorities and playstyles.

Since procedural personas are intended to be a design tool,
they are inherently subjective in the sense that the utility
functions should be constructed by a game or level designer
interested in testing their content for the game. The experi-
ments provided here support the persona concept as useful for
fulfilling specific core priorities for a game of the scope and
size of MiniDungeons 2. How the method scales to games
of higher complexity is an open question; any game could in
principle be tested using procedural personas, as long as it
includes agent control methods that can be optimized towards
a particular utility function. The specification of the utility
function is a complex issue for the procedural persona method:
the concept is useful from a design perspective only to the
extent that game designers are capable of defining appropriate
utility sources and ways of weighting them. One approach
to solving this problem could be learning utility functions
from demonstration: e.g. from groups of observed players or
from designers playing in different styles to demonstrate what
particular personas should play like. This could be enabled
via methods such as inverse reinforcement learning, driven by
evolution or other methods. Regardless, the proposed method
is supported in general by the fact that the personas exhibit
significantly different behaviors in the same environments,
driven by simple utility functions; it is thus likely that game
creators would be able to use the personas to inform their
content creation process. It also suggests that personas could
successfully be integrated as critics in a procedural level gen-
eration system; this was previously done for MiniDungeons,
a simpler game with simpler persona implementations [9].
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Another direction for future work is to validate a posteriori
the ability of the defined personas and their behavior to map to
real human playtraces. This could allow players to be mapped
to one of the four personas based on the similarity of persona
and player gameplay traces either on the action-by action-level
or on a more macro-strategy level, as done in [8]. However,
the current experiments do not include human players as they
test how our method can allow game/level designers to define
archetypal personas a priori, before even showing the game
or level to players. The experiments have demonstrated that
different behaviors can be encoded in such a way, and that the
persona’s behaviors (in terms e.g. of monsters killed) largely
match the designers’ stated intentions.

VIII. CONCLUSION

This paper presented the general concept of procedural
personas, a framework for generative player modeling for auto-
matic playtesting. Procedural personas represent a potentially
general framework for representing archetypal playstyles,
based on decision theory, that could inform game designers
about properties of their game content as it is being created.
The experiments reported in this paper show that personas are
capable of showing different interaction patterns in response
to game content and can help map out the playspace afforded
by game levels as those are being designed. By combining
evolution and MCTS, we produce a set of personas that show
what different play styles might look like in MiniDungeons 2.
Evaluations can be run in a short amount of time, making
it a feasible method in an iterative design process. Future
research will investigate how procedural personas can be used
as interactive inspirational tools in the content creation process
and as automated critics in procedural content generation.
Future work should also focus on ways to scale the procedural
persona framework to games of larger complexity and on ways
in which personas can learn from demonstration instead of
having their utility functions specified directly.
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