
Artificial Intelligence for Designing Games

Antonios Liapis

Abstract Making a game requires a diverse set of skills and talents: visual design,
sound design, level design and narrative design require developers to be creative
within their own domain but also to consider how their creations impact other facets
of the game. Since games are interactive media, however, players also exercise their
own creativity in order to overcome challenges introduced by the game’s designers
or by other players in multi-player settings. This chapter will analyze games under
the prism of the six facets of creativity which go into the play experience: visuals,
audio, narrative, levels, rules, and gameplay. Important examples of human creativ-
ity in commercial games will be highlighted for each facet, as well as how artificial
intelligence has been applied to generate content for each facet. The chapter con-
cludes with a discussion on how an artificially intelligent system can facilitate the
collaboration of different generators, and possibly human designers and artists.

1 Introduction

Over the last five decades, digital games have become a mainstay source of en-
tertainment for millions. Games are now available for a broad variety of devices in-
cluding personal computers, dedicated game consoles, mobile devices, social media,
virtual reality headsets and much more. As digital games are becoming ubiquitous,
the demographics of players continuously shift: in the United States, for instance,
45% of gamers are women while more than a quarter are aged 50 years or older [30].
The massive number of potential players, and the breadth of interests they may have,
has pushed the game industry towards diversifying the themes in games as well as
the interaction paradigms: from massively-multiplayer online games which can be
played over a period of many hours, to simple-to-grasp puzzle games played within
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minutes on a mobile device. The massive market for games (the US video game in-
dustry generates more than $30 billion a year [30]) has incentivized many aspiring
game developers to join large game studios with thousands of employees, to make
games on their own or with a small group of friends, and anything in-between. As
more accessible tools for game development become available, such as the Unity
game engine [184], the demographics of game developers similarly shift: today, it
is easier than ever to create a game with minimal technical knowledge. This has led
to a huge variety of games designed by — and for — a very diverse set of people.

While making a game is now easier than ever in terms of technical competence,
the creativity required from game designers can not be understated. A game’s visu-
als, soundscape and plot structure are reminiscent of traditional art forms such as
painting and sculpting, music and storytelling. While confined to an art direction
that lends itself well to an interactive digital medium (for instance, game narrative
follows specific themes and presumes that it will be exposed in a non-linear fash-
ion), game artists and writers face similar challenges as their peers in traditional
arts. Games, however, are interactive media tailored towards entertainment and pro-
longed engagement. Therefore, other dimensions of the creativity going into game
development is the design of game levels and game rules. Finally, end-users also
insert their own creativity when playing the game in order to overcome challenges
introduced by the game’s designers or by other players in multi-player settings.

Creativity in game design and development therefore must be introduced into
several different facets of the game experience, and at different times — from con-
cept development to interaction with the final artifact. Traditionally, these creative
roles were undertaken by teams of human game developers, designers and artists.
However, time and budget constraints as well as the desire to innovate has led com-
mercial studios to offload some content design and development efforts to algo-
rithms. Currently, procedural content generation (PCG) is often a selling point for
games, especially promoting the benefits of perpetually fresh and unique game con-
tent such as new levels or enemies in every playthrough. One of the most ambitious
games which largely relied on PCG for its promotion and marketing was No Man’s
Sky [161], with trailers preceded with the text “Every atom procedural”. The appeal
of a vast galaxy that No Man’s Sky could produce thanks to PCG led its small team
of developers to enjoy a large commercial success, with the game being the second-
highest selling game in North America by revenue in the month of its release. Sim-
ilarly, negative criticisms raised towards No Man’s Sky were largely towards the
expressivity of its generators [89] (with new planets not being meaningfully differ-
ent than previously visited ones) as well as more mundane issues such as the lack of
multi-player interactions.

Beyond commercial games, there has been a growing academic interest in arti-
ficial intelligence (AI) for generating game content for over a decade [108]. Evolu-
tionary computation, machine learning, constraint programming and a plethora of
other approaches have been applied to generate game content of different facets,
from game levels to visuals and plot structure. In the process of such research, many
important findings regarding design patterns, evaluations of game quality, and good
design practice for specific types of games have surfaced, enriching our knowledge
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of game design. One of the core aims of PCG research is the design of complete
games by AI; to achieve this, algorithms must show skill in creating quality content
in one or more facets. Additionally, algorithms must assess how harmonious the
entire game outcome is, i.e. orchestrate different generative algorithms [73].

This chapter will analyze games under the prism of the different facets of creativ-
ity which go into the play experience. In Section 2, six facets are identified (visuals,
audio, narrative, levels, rules, and gameplay) and important examples of human cre-
ativity in commercial games are highlighted for each facet. Section 3 highlights how
the different facets must be orchestrated in order to produce a cohesive whole. Sec-
tion 4 provides an overview of generative algorithms in commercial games, while
Section 5 focuses on generative algorithms broadly based on artificial intelligence
principles. Algorithms and key examples of AI-based content generation for specific
types of content (usually in one facet) are described in 5.1, while approaches for AI-
based orchestration are described in 5.2 and important cases of full or partial game
generation are highlighted in 5.3. The chapter concludes in Section 6 with key step-
ping stones and hurdles on the road ahead towards a fully orchestrated artificially
intelligent game designer.

2 Games as a Multi-faceted Creative Domain

Games lie at the intersection of a multitude of creative domains, from art and music
to rule systems and architecture. These domains influence each other, with flashy
visuals reinforcing a fantasy narrative and creepy background sounds adding to
the player’s tension during gameplay. Games are by their very nature multifaceted:
based on [73], we identify six facets of games where creative input by either a com-
puter or a human is necessary.

2.1 Visuals

Like any digital medium, the vast majority of games are displayed on a screen. A
game’s visuals are primarily geared towards representation: in Super Mario Bros.
[170] for example, visuals allow players to identify that their player’s avatar is a
plumber, that the enemies are turtles, or that some of the tiles can be walked on.
More than that, however, visuals provide hints about the functions of the elements
they represent: cracked floor tiles in Prince of Persia [152] hint that these tiles may
fall if the player stands on them, while a boss monster’s windup animation may
hint at an imminent barrage of attacks that the player must avoid. Finally, on-screen
visuals may depict items outside the gameworld, such as user interfaces in the form
of menus or heads-up displays.

The gameworld where players interact with in-game objects (enemies, puzzles,
hazards, other players, etc.) can have two-dimensions (2D) or three-dimensions



4 Antonios Liapis

(a) Photorealism: Madden NFL
18 c©Electronic Arts, 2017

(b) Caricaturism: Limbo
c©Playdead, 2011

(c) Abstract: Geometry
Wars c©Activision, 2007

Fig. 1: Different visual styles in games.

(3D). For example, classic 2D platformer games such as Super Mario Bros. are
displayed as a cross-section of a hypothetical world, from a side-view perspective.
Modern games such as Candy Crush Saga [165] follow a similar 2D appearance,
from a top-down perspective. Both side-scrolling and top-down perspectives have
been extensively used for 2D games from the 8-bit era of the 1980s to modern-day
mobile devices. The illusion of the third dimension (depth) can be simulated using
two-dimensional graphics through scaling and depth ordered drawing, as in Wolfen-
stein 3D [141], or using an angled isometric view with a three-quarters perspective
[19]. Truly 3D games became mainstream in the 1990s, and have since then domi-
nated the marketplace, especially for larger (AAA) game companies. Games set in
3D environments offer an immersive experience, and can allow the player to see
through their avatar’s eyes (first-person camera). When players have full control of
their first-person camera, interaction becomes more natural. Therefore, virtual real-
ity games almost exclusively use the first-person camera view.

Due to the variety of ways that games can be rendered, visual design offers game
makers immense creative freedom. On the other hand, game visuals are representa-
tional and may be constrained to resemble real-world references. This is particularly
relevant for 3D games that aim for a realistic and immersive experience.

Photorealism in games attempts to closely match the real world, from the appear-
ance of the assets themselves (e.g. high-polygon meshes, high-resolution textures)
to the way that light reflects on different surfaces. Similar to several art movements
with similar goals (realism of the 1800s being an obvious example), photorealistic
game art may attempt to painstakingly detail everyday real-world objects, such as
cars’ rims in racing games or athlete’s faces in Madden NFL 18 [155] (see Fig. 1a).
More interestingly, however, photorealism can be used for game objects with no real
counterparts or references in the real world, although rules of physics and lighting
are presumed to still exist. This is particularly relevant in fantasy or science-fiction
gameworlds, which abound in the game marketplace. Järvinen [49] identifies the
former type of photorealism in game art as televisualism and the latter as illusion-
ism or fictional photorealism.

Contrary to photorealism, many games borrow from comic art style to exagger-
ate certain elements of a gameworld or the characters within it. The motivations for
such caricaturism in game art are manifold: caricatures draw players’ gaze towards
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important visual cues, but also elicit and accentuate specific aesthetics to the play-
ers. Caricaturism was necessary during the early eras of games (e.g. the 8-bit era of
the 1980s), where each visual element consisted of a few dozen pixels and a handful
of stark and vibrant colors. In this constrained medium, game makers had to de-
sign monochrome or duochrome enemies which could stand out in a monochrome
background: this often resulted in oversized weapons and eyes versus undersized
bodies and legs. While newer technologies have alleviated many such constraints,
the ability of caricatures to grasp player attention is still exploited in games with
many disparate elements on screen at any time. Caricaturization allows players to
control diverse hordes of units in real-time strategy games such as Warcraft II [148],
and to notice patterns in a screen full of sweets in Candy Crush Saga. Caricatures
geared towards eliciting specific aesthetics also offer a broad range of options to
a visual designer, from the monochrome and unwelcoming world of Limbo [176]
where all characters are black outlines with white eyes (see Fig. 1b) to the vibrant
particle effects and chaotic shifting backgrounds in Super Smash Bros. [172].

On the extreme end of caricaturization, game art veers into non-representational
approaches similar to abstract expressionism in the visual arts. Since games usually
revolve around a player trying to overcome challenges in an environment, the envi-
ronment (and the player’s avatar) usually must be somehow represented. Therefore,
abstract game art is fairly rare: however, games focusing on mechanics rather than
a player’s immersion can use abstract game art (see Fig. 1c). Examples of early
games that feature abstract game art are Tetris [174] or Pong1 [142]. Thomas Was
Alone [168] is an interesting example of a modern abstract game where an elaborate
story and character dialog is juxtaposed by an abstract representation of the world
and characters as rectangles.

2.2 Audio

Similarly to films, a game’s audio has a complementary role to the game’s visuals
and is often overlooked. Early game audio was challenged by technological lim-
itations and largely revolved around a handful of monophonic channels, i.e. “the
blips and bloops of Pac-Man and Super Mario Brothers” [132]. However, music
and audio in games has evolved rapidly in recent decades and has been recognized
with awards by BAFTA (“Audio Achievement”, “Music”), Spike TV (“Best Origi-
nal Score”, “Best Song in a Game”) and most game festivals. Coupled with visuals,
game audio aims to immerse the player through “a shift of perceptual focus, from an
awareness of ‘being in and part of’ reality to ‘being in and part of’ virtuality” [35].
As argued by Collins [18], sound in interactive media is dissimilar to film or music
(sound that you listen to) but instead merges with the player’s actions in-game (such
as an avatar jumping) and out-of-game (such as a player pressing the “D” button on
a keypad) as much as it merges with the player’s visual stimuli.

1 Pong is a reference to ping-pong (or table tennis) although the rectangular paddles, square ball
and its movement do not resemble table tennis in any way.
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(a) Voice Acting by Jack Black in
Brütal Legend c©Double Fine, 2013

(b) Sound Effects as hints
to the player in Thief: The
Dark Project c©Looking
Glass, 1998

(c) Soundtrack and
matching its rhythm in
Guitar Hero c©Harmonix,
2005

Fig. 2: Different uses of audio in games.

Game audio could be further split into background music, sound effects, voice
acted dialog, and musical score for the game’s introduction or cinematics. The latter
follows a pre-scripted format as it can not be interacted with but only consumed in
a similar way to film or music; it is therefore less relevant in our analysis. Voice
acting is now a staple feature in major commercial games, especially by larger com-
panies; an abundance of Hollywood actors have lent their voices in games, such
as Sir Patrick Stewart and Sean Bean in The Elder Scrolls IV: Oblivion [143] or
Jack Black in Brütal Legend [154] (see Fig. 2a). While a player’s interaction with
non-player characters (NPCs) through dialog can be a core part of the gameplay
experience, such interaction is with the narrative content of the dialog; voice acting
merely adds a level of immersion, making characters more relatable or memorable
but is consumed in a similar way as the cinematic musical score.

Sound effects are particularly strong examples of Collins’ position for game au-
dio merging with a player’s actions [18]. A player’s actions are often accompanied
with a sound effect, usually unique to this action. Examples include the jumping
sound for the player-controlled Mario in Super Mario Bros., or the short acknowl-
edgment in English by a unit receiving a harvest command by the player in Warcraft
II. Some sound effects are tied to the outcomes of player actions: an example is the
delayed sound effect when three or more jewels are removed in Bejeweled [177]
due to a player swapping their positions. Such sound effects (and the accompanying
particle effects) provide an audiovisual reward to the player and further motivate in-
teraction with the game. Similarly, opponents’ actions are often followed by sound
effects, such as the “huh?” sound of guards starting to investigate a suspicious sound
in the stealth game Thief: The Dark Project [166] (see Fig. 2b). Such sound effects
attract players’ attention, alerting them of dangers or notifying them that their ac-
tions have had unexpected outcomes. For instance, players may pick up a weapon by
walking through it without noticing in a first person shooter game; they are alerted
of the fact by a weapon cocking sound. Finally, there are sound effects that help
situate the player in the environment: examples include the sound of the player’s
footsteps which may change depending on the surface that is being walked on. Such
environmental sounds, often modified based on its source’s position in the world
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and the head position or rotation or the player’s avatar [40], can be coupled with the
background music to become part of the soundscape (described below).

Background music in games is often perceived as decorative, providing ambience
or some aural stimulus during certain repetitive tasks. However, background audio
can be foregrounded when it affects gameplay: examples include rhythm games
such as Guitar Hero [160] where the music hints when certain keys must be pressed
by the player (see Fig. 2c), or similarly in Crypt of the NecroDancer [151] where
timing player actions to the musical beat is the key to avoiding getting hurt and
losing the game. Background music is often customized to a specific game level
(or part thereof) or to a specific player activity. For example, the 28 tracks in the
awarded soundtrack of The Elder Scrolls IV: Oblivion are split between “explore”,
“public”, “dungeon”, “battle” and “special” categories: a random track is played
when the player is exploring the overworld (from the “explore” category) or under-
ground locations (from the “dungeon” category), fading into a random track from
the “battle” category when the player is attacked. Transitions between background
music tracks may be as basic as the above, with simple fade-ins and one random
track in one category chosen when the current track finishes. Interest in more dy-
namic background music in games has led to adaptive music in games such as Tom
Clancy’s EndWar [181], where the music does not loop or fade but is dynamically
adapted to the evolving narrative of the strategy game being played, or Proteus [164]
where the carefully crafted and impeccably synchronized music channels are turned
on or off based on the location and camera view of the player.

2.3 Narrative

While not all games rely on a story structure, dialog, or plot exposition, a plethora
of large-scale digital games rely on their narrative to draw players into their story-
world and action. Early digital games such as ZORK [163] were closer to hypertext
[53] or “choose-your-own-adventure” booklets, where pre-scripted narrative events
were presented textually as a response to specific player commands (such as “ex-
amine leaflet” or “go north”). Many contemporary adventure games are similarly
structured to reveal segments of a pre-authored narrative (usually via an embellished
audiovisual cutscene) when players find pre-determined solutions to puzzles. Sim-
ilarly, a gameworld’s history is often revealed through in-game interactable items,
such as books that can be read (see Fig. 3a); such items often contain short stories
which are individually authored with a clear beginning and end. The freedom of
players to explore a vast gameworld poses a challenge to narrative structures as de-
signers can not anticipate where players may go first, which actions they will take,
or which characters they will converse with. This very interactivity has been iden-
tified by Ryan [104] as a crucial component for deciding what kind of stories can
be told by digital media: specifically, a user being able to change the conditions.
Ryan goes further to distinguish interactivity along the axes of internal (the users
projecting themselves as a member of the fictional world) versus external (when the
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(a) Books with complete
stories provide atmosphere and
clues in The Elder Scrolls V:
Skyrim c©Bethesda, 2011

(b) Uncovering a pre-written
narrative structure in L.A. Noire
c©Rockstar Games, 1999

(c) Players making their
own stories in The Sims
c©Maxis, 2000

Fig. 3: Examples of narrative structures in games.

user is outside the fictional world), and exploratory (“the user is free to move around
the database but does not make history alter the plot” [104]) versus ontological (the
user can send the story down one road of a forking path). Narrative in games can
follow many different paradigms along this typology, such as the exploratory na-
ture of mystery games such as L.A. Noire [178] (see Fig. 3b) where players can
move freely but will inevitably uncover a pre-written history about what happened
(exploratory-internal), or games such as The Sims [167] (see Fig. 3c) where players
can swap control of different characters and decide who they will fall in love with,
fight and so on (external-ontological).

2.4 Levels

A player’s actions within a digital game take place in a virtual space traditionally
referred to as a game level. Game levels can be as abstract and minimal as those
of Tetris [174] or Pong [142], where only the surrounding walls (which are often
invisible) are designed to constrain the player’s actions. A game may consist of
one vast level, such as the gameworld of The Elder Scrolls V: Skyrim [145] or the
galaxy of Stellaris [175]; it can be made out of a large number of self-contained
levels experienced sequentially, as in Super Mario Bros. or Arkanoid [179]; differ-
ent levels can also be presented as options to the player as in Cities: Skylines [153].
Similar to visuals, game levels may not necessarily reflect the real world: as noted
above, abstract levels such as those of Tetris and Arkanoid are merely spaces de-
signed to challenge a player without reflecting the real world. On the other hand,
a large number of games rely on real-world tropes for designing levels regardless
of whether their visuals are photorealistic or caricaturized. For example, levels in
Pokémon games [158] feature villages, beaches, forests and rivers, even though the
trees in its forests are unrealistically small and set in a dense grid to create a maze-
like structure (see Fig. 4a). When games’ visuals and general direction is closer to
the real world, levels have to closely mimic natural habitats, from the type and den-



Artificial Intelligence for Designing Games 9

(a) Unrealistic sprites as
obstacles in Pokémon:
Gold c©Nintendo, 1999

(b) Full view of the
level in Pac-Man
c©Namco, 1980

(c) Open World based on real locations in
Assassin’s Creed II c©Ubisoft, 2009

Fig. 4: Examples of level structures in games.

sity of fauna around rivers in Far Cry 5 [183] to the layout of European cities in
Call of Duty [162]. Similarly, level design in science-fiction or fantasy worlds must
balance between the known and the evocative unknowns, with large-scale mega-
structures reminiscent of modern skyscrapers as in Mass Effect [146] or bombed
and repurposed Washington landmarks in Fallout 3 [144].

Regardless of their style or proximity to real-world structures and physics, de-
signing game levels is similar in many ways to architecture. Similar to architecture,
level design must find the appropriate balance between “form” and “function”, i.e.
how evocative and appealing the game level is versus how easy it can be for the
player to navigate and recognize. In the spirit of the Bauhaus movement, game lev-
els could be designed to be purely functional without any ornamentation: an exam-
ple is the Pac-Man [169] maze where the goal is function, i.e. allowing the player
(Pac-Man) to clearly see the entire level, the game’s goals (pellets) and the game’s
challenge (ghosts), and navigate it (see Fig. 4b). Conversely, adventure games are
known to include useless clutter in their levels for the purpose of increasing the chal-
lenge of the primary mechanic (identifying a useful if obscure item or solution on the
screen) as well as providing humorous descriptions or responses by the protagonist
when other non-solutions are selected by the player. Between these two extremes,
most game levels have to provide some decoration to help the player identify with
the game’s setting, such as Venetian architecture in Assassin’s Creed II [182] (see
Fig. 4c), while at the same time ensuring that players can take advantage of most
of the game’s mechanics at their disposal in a rewarding and straightforward way.
In the same example, buildings in Assassin’s Creed II must be tall (perhaps taller
than normal buildings in 15th century Venice) in order to motivate and reward the
climbing mechanic while roads must be wide and obstacles evenly spaced apart to
allow for the Parkour-style movement that the game is known for.
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2.5 Rules

The rules of a game are paramount to its interactivity, as they constrain and guide
the player towards specific goals and gameplay patterns. Some rules determine the
game’s ending conditions, i.e. when the game is won and when the game is lost,
which respectively provide the player with a goal and a challenge. Among other
game rules, of particular interest are those pertaining to player actions: these me-
chanics dictate how the player can interact with the game and are the primary drivers
of player agency. Mechanics are usually described as verbs [50] such as “jump” in
Super Mario Bros. or “take cover” in Gears of War [156]. Mechanics are often dif-
ferentiated from other game rules, which determine the transition between game
states, as “rules are modeled after [player] agency, while mechanics are modeled
for agency” [110]. The use of a mechanic, e.g. Mario jumping over a Goomba en-
emy, can trigger a rule-driven state transition, e.g. removing the Goomba from the
game. The interaction between the many rules, mechanics and winning conditions
lead to complex dynamics and shape the player experience, which we discuss in
Section 2.6.

2.6 Gameplay

Designing a digital game can be a complex creative task, but a game’s ultimate
purpose is to be played by the end-user. Gameplay refers to the experience of playing
the game, or “the phenomenological process of an epistemic agent interacting with a
formal system” [111, page 104]. During gameplay, a player interacts simultaneously
with all other facets; their interrelations can shape the player’s affective state and
immersion [11]. Each player interprets the visuals, level structures, narrative and
game rules in their own way, based as much on cultural and ethical preconceptions
as on their in-game decisions (e.g. the order in which they visit locales in an open-
world game such as Far Cry 5).

Of particular interest is how players interact with the formal systems: the game’s
rules and mechanics. While this ruleset is pre-scripted by the game’s designers, each
player can use it in different ways — potentially exploiting it in unforeseen ways
which can break the intended game balance. An example unforeseen exploit was dis-
covered by players in The Elder Scrolls V: Skyrim: a player could pick up a bucket
or other concave container and place it over an NPC’s head, effectively blocking
their line of sight completely and allowing the player to steal all of the NPC’s valu-
ables lying around. More interestingly, the interaction between different rules and
mechanics could lead to emergent dynamics [46]. Such dynamics can be influenced
by social and competitive concerns on the part of the player community, which can
lead to an ever-changing metagame [15] of strategies and counter-strategies — espe-
cially in (multi-player) e-sports games such as StarCraft [147]. Beyond the primar-
ily functional concerns of dynamics, however, the interaction among all facets (and
especially visuals and audio) can evoke strong emotional responses from the player.
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These responses range from basic emotions such as fear and joy [28] to a broader
range of aesthetics such as sensation and discovery [46]. While the intended emo-
tions and aesthetics of players can be designed a priori, they can only be elicited
during gameplay and may vary immensely from player to player and from those
imagined by the designer.

3 Orchestration

While the different creative domains incorporated in games are fairly well-defined,
it is important to note that games are more than the sum of their levels, winning con-
ditions or visual styles. Elements in each facet contribute to the final play experience
and need to be harmonious with other elements in this or other facets. At the sim-
plest level, a decision made by a creator of one facet can constrain the possibilities
of designers in the same or other facets; for example, a rule that determines the delay
between the player avatar’s death and the game restarting constrains the duration of
the animation of the avatar’s death and the sound effect that accompanies it. More
broadly, the style adopted in one facet will likely constrain the style in other facets:
an obvious example is the choice for photorealistic visuals, which necessitates that
game levels’ architecture closely follows real-world tropes and game rules that also
match real-world physics.

In most cases, however, the interaction of facets and their impact on the play ex-
perience is less straightforward. As an example, Amnesia: the Dark Descent [157]
is a horror game set in an ancient manor or castle, where the lone male protagonist
must explore the different floors armed only with a lantern while avoiding enemies
which can either kill him or drive him insane. The losing conditions (death or in-
sanity) are reinforced by the rule that darkness slowly lowers sanity and the rule
that the oil for a lantern (which can be turned on or off) can run out. These rules
force the levels to be designed with some areas already lit by ever-burning torches,
which are connected via dark or lit areas: the player is bound to navigate through
the lit corridors to avoid using up the lantern’s oil. On the other hand, the level de-
sign places most oil resource pickups in dark rooms, forcing the player to explore in
unsafe, scary areas. The visuals reinforce the tension of the experience, with post-
processing filters on the player’s screen making it more difficult to see when sanity
is low: since sanity drops in dark areas, the filters on the visuals make it even harder
to see in an already dark space, and thus increase frustration and panic. Finally,
ambient sound effects such as creaks or moans (even when nothing is there) keep
players on edge, while at low health or sanity the background audio includes the
character’s erratic heartbeat as an aural indication of the game state (rules) but also
as another source of stress. While the design decisions on each of these facets —
and more, such as the protagonist’s backstory or the design of the enemies — are
harmonized and perfectly aligned towards an intended gameplay experience, it is
difficult to identify which facet was fleshed out first and constrained others in this
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process. It is far more likely that the level design, visuals, audio and rules all evolved
together through iteration and playtesting (i.e. feedback from the gameplay facet).

Finally, the design decisions in different facets (and their harmonization) can
be guided by established game patterns such as player repertoire and game genre.
Player repertoire consists of “the skills and methods for overcoming the challenges
of the game” [54, page 56]. Playing any game requires the player to expand their
repertoire and perfect their reflex time or tactical response to challenges. Moreover,
“a player approaches every game with whatever repertoire of skills he or she has”
[54, page 5] and thus the design of new games can take advantage of patterns of
play from past games that players are likely to have experienced. Elements such
as the avatar’s death abound in games, and thus will be easily understood by the
player community. Designers can take advantage of this fact, and either use com-
mon rule, level or visual patterns (respectively, avatar death, maze-like structures,
or hovering icons above important NPCs) to make the game more accessible. Al-
ternatively, designers can go against a few of those patterns in order to subvert and
challenge the players’ repertoire. Game genre plays a similar role: players expect
specific elements from specific types of games, and genre has been a staple way
of categorizing games since the 1980s (e.g. adventure games, shooter games, puz-
zle games). Player repertoire is tied to genre: most puzzle games do not feature the
avatar’s death, while most shooter games do. All facets are tied in one way or an-
other to genre: music rhythm games presume simple visuals so that the player easily
understands which button to press while the audio needs to feature tracks of high
musicality; horror games almost always feature a ghost story (narrative), overpow-
ering monsters (rules) and intense negative feelings during gameplay. Using these
pre-existing formulas in the design of, and relationships between, game facets can
be a shortcut for many of the challenges in designing a new game.

4 Procedural Content Generation in Games

Digital games have de facto relied on algorithmic processes for handling mundane
tasks such as collision checking, capturing key strokes and transforming them into
in-game actions, or rendering visuals onto the screen. However, even in the earliest
days of digital games, algorithms were at times allowed to take creative decisions
which affected the player’s engagement and perceived challenge. For instance, in
the computer game Rogue [180] an algorithmic process was tasked with creating
a fresh new dungeon every time the player started a new game. The dungeon con-
sisted of rooms and corridors, as well as monsters and traps that were designed to
challenge the player. The game was designed explicitly to highlight and take advan-
tage of this algorithmic generation process: the game would delete the player’s save
game if their avatar died while exploring the dungeon, and thus the player would
need to start anew, in a new dungeon, without being able to anticipate the layout or
encounters within it. Another instance of algorithmic generation is the video game
Elite [150] where a vast universe (8 galaxies, each with 256 planets) is generated
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(a) Level Generation in
Diablo III c©Blizzard, 2012

(b) Weapon Generation in
Borderlands c©Gearbox,
2009

(c) Enemy Generation in Shadow
of Mordor c©Warner Bros, 2014

Fig. 5: Different types of generated content in commercial games.

at the start of the game, letting players explore new galaxies if they wish to start a
new game. As Elite is an open-ended game where exploration, trading and combat
can be undertaken over a very long period of gameplay, the generative process al-
lows the vast gameworld to be stored in a few parameters (e.g. a random seed) and
past games can be saved and loaded despite the small memory available to 1980s
computers. Many of the early instances where games offloaded creative tasks to al-
gorithmic processes were motivated by these two factors: the desire to provide new
experiences in every playthrough, and the ability to compress complex game assets
(such as a vast gameworld) into a few bytes of memory. Development of new gener-
ative algorithms was largely driven by these factors, in a similar way that graphics
renderers were developed to be as efficient and as impressive to players as possible
despite limitations of the technology available at the time.

As digital games diversified over the past 30 years, algorithms have similarly
been used for creative tasks in a variety of roles. Some of the original motivations
for algorithmic generation are still applicable; for instance, No Man’s Sky based
its advertisement campaign on the vast number of procedurally generated planets
(and their contents), which could be compacted into a small save file due to the
compressible generator parameters. Similarly, when presenting Diablo III [149] the
developers touted the series’ “hallmarks: randomized levels, the relentless onslaught
of monsters and events in a perpetually fresh world, unique quests, tons of items,
and an epic story [. . . ]” [8], similar to the perpetually fresh world of Rogue in each
playthrough. However, modern games often use algorithmic processes during de-
velopment and not just to generate content unique for each player. For example, to
recreate the mountainous landscape of Montana in Far Cry 5 developers had to en-
code some of the physical characteristics (e.g. erosion) or biomes (e.g. vegetation)
into a generative algorithm which could create the vast gameworld. This first draft
of the gameworld was then enhanced by game designers, e.g. to add game-specific
objects such as quest locations or characters [14].

While the majority of commercial games that use generative algorithms focus
on the creative facet of level design (see Fig. 5a), there are interesting examples of
generation in commercial games for the other facets. Of note is the algorithmic de-
sign of weapons in Borderlands [159] (see Fig. 5b), which generates both visuals
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of the 3D weapon and its game rules (e.g. bullet speed, damage, etc.). Borderlands
created new weapons by combining 3D models of existing weapons (e.g. long bar-
rel, sniper sight) and calculating the weapon’s in-game behavior based on those
(e.g. a laser rifle with a sniper scope which freezes targets hit by its slow bullets).
Other games use algorithms to generate non-player characters: of particular note is
Middle-Earth: Shadow of Mordor [185] in which orc antagonists are generated with
a matching name and appearance (e.g. “Ruktuk the corrupt” is likely to have a face
full of sores) as well as special powers and weaknesses that the player must discover
and exploit in order to defeat them (see Fig. 5c). Several games use algorithms to
generate aspects of the narrative, such as the Radiant Storytelling system in The
Elder Scrolls V: Skyrim which customizes quests’ locations and characteristics, or
Nemesis quests in Middle Earth: Shadow of Mordor which are instantiated accord-
ing to orc chiefs’ personalities and their history with the player. The algorithmic
generation of 3D models and textures abounds in games for mundane features, such
as small variations in plant life, through generative grammars and L-systems [128].
Similarly, procedural textures are a mainstay of the game industry — although they
arguably lack any aspect of computational creativity or decision-making from the
algorithms’ part. Finally, a small number of games have experimented with proce-
dural music, such as Tom Clancy’s EndWar which can provide endless music or
Proteus where the soundscape adapts to the player’s view. In all known cases of
procedural audio in games, the algorithms are scripted to turn human-authored bits
of music on or off, or to apply filters to pre-made sound effects.

5 Artificial Intelligence and Game Design

While commercial games for the most part use simple scripts to design parts of a
game, there is an increased interest within academia to ascribe more creative free-
dom (and more complex artificial intelligence) to algorithmic game design. For over
10 years, a number of conferences2 and journals3 have tackled artificial intelligence
(AI) applied to games — both for playing and for designing them — while AI al-
gorithms for game design have been accepted in many highly-ranked journals. Two
books on the topic of procedural content generation have been published in the last
couple of years, one focusing on the academic [108] and one on the practitioner
[109] perspective, while a comprehensive handbook on AI applied in games more
broadly has also been recently published [135].

2 Indicatively, the IEEE conference on Computational Intelligence in Games, the AAAI confer-
ence on Artificial Intelligence in Interactive Digital Entertainment, and several tracks of the ACM
conference on Foundations of Digital Games.
3 A core journal on the topic is the IEEE Transactions on Games and its predecessor, the IEEE
Transactions on Computational Intelligence and Artificial Intelligence in Games.
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5.1 Generating Content through AI

Research in PCG has explored a broad range of algorithms to generate an equally
broad range of game content. Characteristics of such PCG algorithms were put forth
by Togelius et al. [129], considering the moment of use (online while the game is
played versus offline during development), the type of content produced (content
necessary for gameplay versus optional or decorative content), as well as the po-
tential for parameterization and the stochasticity of PCG algorithms. More broadly,
Togelius et al. [129] also distinguished between constructive algorithms, which use
scripts to generate content without assessing whether the result is satisfactory, and
generate-and-test algorithms which verify whether the output satisfies certain con-
straints. While commercial games almost exclusively use carefully scripted gener-
ators to ensure that all output is playable (constructive approaches), the main inter-
est within game AI research has been on generate-and-test methods. What makes
generate-and-test algorithms so compelling is that they require theorizing and for-
malizing of constraints and evaluations on what constitutes an appropriate type of
content; often, such assessment necessitates that the game is played with the new
content.

There are many different approaches to generate and test game content: a sim-
ple approach would be to generate one artifact, test it and re-generate it if it fails
any designer-specified constraint. While this simple approach can work well when
the generative scripts are likely to produce viable artifacts, it can lead to an endless
or nigh-endless re-generation loop in cases where the constraints are strict or the
generators are very likely to produce unwanted content. A subset of generate-and-
test approaches are search-based [129], in which content that is not satisfactory is
iterated upon to improve it — rather than re-generate it from scratch. Evolutionary
computation (EC) is often used to perform this cycle of iterative improvement. At
its most high-level description, EC evaluates a population of candidate solutions,
selecting the best among them to create new candidate solutions via a set of ge-
netic operators, and replacing some or all past solutions with the newly created
ones [52]. This iterative testing and improvement is an ideal paradigm for search-
based content generation: an initial population of often random content is iteratively
improved upon, based on a fitness function which can provide a measure of game
content quality, until an individual satisfies some minimal threshold of quality or
until the computational budget is spent. Evolutionary approaches have been used
extensively for content generation, with many variations. Notable variations include
fitness functions which evaluate content based on simulations of gameplay, requir-
ing an automated playtesting framework so that the notion of playability, balance
or others can be computed based on the playtraces [69]; using human input instead
of mathematically formulated fitness functions to assess content based on visual in-
spection or human playtests with the candidate solutions [123, 72]; constrained op-
timization by combining a granular fitness function for playable content with hard
constraints on what constitutes unplayable content [74]; and evolution towards nov-
elty [83] or surprise [33] to create a broader range of output rather than explicitly
“better” output.
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Other PCG algorithms follow alternative paradigms for constructing or assessing
game content. Declarative programming has been used extensively, for example,
to formalize a design space of desirable content via hard constraints [116]. Using
variations of declarative programming such as Answer Set Programming (ASP),
search problems can be reduced to stable models and subsequently searched in a
straightforward fashion, for example via backtracking. The appeal of ASP-based
content generation is the fact that these algorithms always terminate, returning all
possible solutions to the given constraints with a minimal computational budget,
while its knowledge representation as “what to compute instead of how to compute
it” [116] can be highly compact and error-free. These algorithms have limitations,
however, as they are ideal for a specific set of problems, e.g. puzzle games [114],
and can not handle stochasticity well (such as random weapon damage); moreover,
formulating the design problem as a set of (usually complex) constraints may be as
difficult as finding the solution to the problem itself.

Related to declarative programming, planning approaches have often been used
to generate content in games — especially for game narrative. Since planning ap-
proaches create a plan, i.e. “a temporally ordered sequence of operations” [101],
they are ideal representations for a linear plot where events are chronologically and
logically ordered (e.g. a player must first pick up a sword and learn the location of
a monster, then kill it). Planning algorithms such as the one used by Mimesis [136]
rely on steps for each event in the story: each step “is defined by a set of precon-
ditions, the conditions in the world that must hold immediately prior to the step’s
execution in order for the step to succeed, and a set of effects, the conditions in the
world that are altered by the successful execution of the action” [137]. Plans need
to address flaws (i.e. open preconditions that have not been established by a prior
plan step) and threats which can undo an established causal relationship in the plan
[16]. Variations of this basic architecture such as hierarchical planners [124, 60]
which decompose abstract task into primitive sub-tasks and partial planners where
temporal orderings are only established to resolve threats [55] have been used for
creating both static and interactive narrative. Interactive narrative and drama man-
agement, which can often be found in games, comes with challenges of its own as
the player’s agency may break certain preconditions for the execution of some of
the plan’s steps. This would require re-planning in order to adhere to the author’s
original intent or to satisfy the newly established intent of the player’s character
[100].

In a different direction, game generation algorithms often rely on external data:
the vast real-world knowledge encoded in modern online or offline data repositories
can prove useful in discovering mappings between in-game and real-world infor-
mation. Two different approaches for exploiting game-external data are common,
broadly identified here as a direct and an indirect approach. The direct approach
queries online databases and transforms the results into game content. Examples
of this approach include a Google image search with a specific AI-discovered key-
word, and the subsequent transformation of the image into an appropriately sized
and colored sprite [23]. The transformation can be more or less direct; Barros et
al. [4] provide examples of game generators spanning the spectrum of transforma-
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tion versus fidelity to the original data. The indirect approach parses a vast database
— often consisting of content in games similar to the one the content is intended
for — to discover patterns and exploit them to generate new content. The term
“procedural content generation via machine learning” (PCGML) identifies machine
learning methods which can be used to directly form new content [122]. Exam-
ples include probabilistic Markov models for deciding the next tile in a platformer
game level based on preceding tiles [118], or filters that can automatically repair
poorly formed platformer game levels based on patterns of well-formed levels [48].
Machine-learned models can also be used to assess content, for example by using
computer vision models to assess what real-world object matches an artifact [66], or
by optimizing game levels based on learned models of a designer’s style [76, 70, 82].

Using this broad range of AI techniques, game content of many different types
has been generated. Indicative examples per facet are discussed below:

• Visuals: While most methods for generating visuals are based on computer
graphics techniques and orginate from mathematical models of noise [64], there
have been a few attempts at AI-based generation of visuals. In [45], graphic
shaders were evolved towards a designer-specified color palette: the designer
could specify the intended color for a certain scene and shaders would be evolved
in order for that color to be dominant in the final rendered scene. In [131], pro-
cedural filters on textures could apply slight visual changes to modeled scenes
based on semantic information such as “high vandalism” on models of houses.
The Galactic Arms Race game [39] allows players to interactively evolve the
particle effects which represent the players’ weapons, influencing their color, an-
imation and trajectory. In the Petalz social game [102], the appearance of flowers
was generated through pattern-producing networks [120]; the flowers themselves
could be shared among users and further evolved via mutation or recombination
with the current player’s flower collection. In [67], arcade-style spaceships were
evolved towards designer-specified visual properties such as symmetry, simplic-
ity and other patterns or towards visual novelty. More broadly, there is extensive
work on evolving shapes for spaceships to match a machine-learned model of
user taste [75] or to disrupt current patterns in generated content [71].

• Audio: While games such as Proteus [164] used pre-authored pieces and sim-
ple rules to adapt the soundscape, AI has been used sparsely for game audio.
Of note is the Sonancia system [84] which chooses from a range of pre-written
sound tracks to play for specified events or areas of a game. Scirea et al. [106]
use music generated in real-time to foreshadow game events according to a pre-
written narrative arc. AudioInSpace [44] uses pattern-producing networks which
the player can evolve to decide the timing and pitch of the game’s background au-
dio. Audioverdrive [42] is a side-scrolling space shooter with a procedural audio
system that interacts via a rule-based system with the level design: for instance,
the height of the bottom terrain controls the pitch of the bass synth, while treble
sound events trigger the placement and timing of enemies. Earlier examples of
procedural music in games are surveyed in [17].

• Narrative: Building on extensive work in interactive narrative and drama man-
agement [16], games such as Façade [91] and Prom Week [92] model the game
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state in a way that allows the manager to choose which NPCs utter which lines
of pre-authored dialog. In these cases, a sequence of utterances is chosen as a re-
action to a player’s action, or as a way to introduce a new narrative beat (such as
introduce an argument between NPCs). On the other hand, a repository of stories
can be used as a basis for automatically constructing interactive plots in a fairly
author-free manner [36]. Not all games are focused on story and dialog, but may
still use AI to craft a companion narrative: Charbitat [2] generates game worlds
and then generates quests to fit them, while the General Mediation Engine [103]
creates levels (as sequences of rooms) based on a narrative created via planning
(which adapts to player actions while the game is played), and can also take some
decisions regarding game rules (such as the presence of an inventory).

• Levels: Level generation is by far the most popular PCG subdomain, both in
academia and in commercial titles of the last 30 years. Level generation can
be performed in a constructive manner [107], especially in commercial games.
However, many AI techniques have been applied for level generation such as
generative grammars [27], artificial evolution [129], declarative modeling [112],
and constraint solving [93, 117]. Level generation has often been driven from
a mathematically defined quality formulation based on the similarity with an
archetypical “example” [1], a popular level design pattern [80] or an intended
affective response [97]. Level evaluation can also be offered directly to players,
e.g. using interactive evolution to directly select a preferred level [12], as input to
a learned model of users’ level preferences [70], or indirectly based on gameplay
logs such as time spent in combat [13]. Patterns found via a corpus of similar
levels [121] or based on gameplay feeds [37] have also been used directly to
generate game levels [122] rather than as an evaluation function. Finally, AI has
been used for level generation in design interfaces, as a companion to human
level designers [78, 79, 117, 31].

• Rules: AI-based generation of rules and mechanics is one of the most challeng-
ing aspects of game generation [126] for two main reasons: (a) rules greatly affect
the playability of the game [3]; (b) their quality can arguably only be assessed via
playtesting. In board games, the Ludi system evolved interaction rules [10, 9] in
a complex evolutionary cycle of level and rule generation and subsequent game-
play generation (see Section 5.3 for more details). In a more constrained analog
medium, symmetric chess-like games have been generated by Pell et al. in or-
der to create robust game playing agents [98], while EC was used in [62] to
guide the search of new rules for new pieces based on simulations with differ-
ent heuristic-based game playing agents. In digital games, several early attempts
at automated game design have focused on abstract arcade games, generating
movement schemes and collision rules based on designers’ constraints [115] or
based on the ability of an AI controller to learn the game [127]. Game mechanics
have been generated via planning algorithms in [140], attempting to make the
least possible change to existing mechanics in order to achieve the satisfaction
of different playbility constraints such as end-game goals (e.g. reach the exit),
maintenance goals (e.g. stay alive) and engine constraints (e.g. not occupy the
same space as another entity). Finally, game mechanics in [88] were generated
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based on similarities with existing sprites and their rules or interactions; impor-
tantly, these mechanics were provided as suggestions for a human game designer
rather than automatically added and tested in a game.

• Gameplay: As noted in Section 2, gameplay is unique among the facets as it is
a task not undertaken by designers but by players. Simulating a human player
through artificial intelligence is much closer to domains such as robotics [65] or
self-driving cars [90, 32]. In the context of AI-based game design, game play-
ing agents are primarily useful for automated playtesting of other game content.
These automated playtests can then inform the evaluation of the underlying game
content, and test for constraint satisfaction or provide a heuristic that can be op-
timized via search-based PCG [129]. In simulated playthroughs, it is common
that the game playing agent plays optimally, especially when creating levels for
an AI competition [99]. However, some degree of human-like behavior can be
desirable as well from an automated playtester. For instance, artificial drivers
[43] maximized an “objective” efficiency (i.e. distance covered in a preset time)
while minimizing deviations from captured player data in terms of steering and
acceleration. In other work on AI playtesting, artificial agents attempt to play the
MiniDungeons puzzle game [41] with different objectives, such as collecting the
most treasure or taking the fewest steps.

5.2 Orchestrating Game Generation

The ideal of AI-based game design presumes an AI taking design decisions on most
— if not all — aspects of a game. To reach this ideal, the AI system must be able to
orchestrate the various facets of a game. Similar to a human designer or team, the
computer must understand how choices in the game rules may require a tweak in
the game’s visuals or a complete re-write of its backstory. As argued in Section 3,
most elements of a game are intertwined. When building a generator of game lev-
els in an existing game, the programmer can make assumptions on the genre, rules,
visuals and general gameplay style from a design document, prequels to the title, or
tropes in similar games. In a game designed primarily by an artificial intelligence,
however, these links between facets and game elements must be considered during
the process of design. In [73], purely algorithmic game design was hypothesized
along a spectrum between a purely hierarchical, top-down process and an organic,
bottom-up process. Specifically, a top-down approach would involve a generated
high-level frame for the game (e.g. a game pitch) which would be used as a guide
to generators that could iteratively add details to it — going from a vague color
direction/palette down to the most minute details such as wall texture generation.
A bottom-up approach could use a system similar to the blackboard [29] and al-
low expressive generators able to create a large variety of content (e.g. labyrinthine
single-player game levels as well as strategy game levels for multi-player competi-
tions) to contribute to a general framework. Cohesion between the elements on the
blackboard could be tested by an internal or external algorithm (or even by a human
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designer) and incoherent content could be regenerated until there was a cohesive
whole game. As suggested in [73], AI orchestration could target the production of a
complete game directly playable by end-users, or create a draft schema which could
be further refined, edited or partially re-generated by designers. In the latter case,
the AI system could be partially interactive, allowing designers to tweak parts of
the requirements such as the AI-generated game pitch for a top-down approach or
“manually” test for cohesion in a bottom-up approach. Finally, the source of real-
world knowledge on game design could be embedded into the algorithm, provided
as human input directly from the designer (e.g. via parameterization or initial seeds),
or discovered from crowdsourced data such as open data repositories, direct player
feedback and playtests, or computational models learned from a large corpus of past
games and/or player annotations.

A core challenge of AI orchestration and thus AI-based game design is finding a
computational mapping between dissimilar facets. At a smaller scale, a number of
research projects have attempted to address this issue in a more constrained space.
For example, a mapping between the color of sprites in the Pokémon games (vi-
suals) and their in-game type (rules) was built as a decision tree and then used to
drive generation of appropriate visuals for designer-specified variant Pokémon [68].
Similarly, the mapping between the strategic qualities of chess pieces was mapped
to their visual appearance, allowing the generation of pieces for newly generated
chess-like rulesets [61]. Mappings between players’ affect during gameplay and
the structures of a game level has been attempted in numerous ways [134], while
similarly the affective response of players to game audio has been learned from ex-
periments done using crowdsourcing [87]. Machine learning seems to be an ideal
tool for finding such mappings, although the task is challenging due to the limited
or non-uniformly formatted game data available [122].

Other ways of combining facets, without using a data-driven model of their
relationships, have been fairly successful in generating games. Using simulations
of gameplay as an evaluation function is an example of hierarchical orchestration
where game content such as levels or rules is generated first, and then the gameplay
is generated based (usually) on artificial playtraces. Unlike previous examples where
the mapping from, e.g., levels to a player’s affective response during gameplay was
predicted via a computational model, simulations actively generate the gameplay
facet rather than predict high-level responses to it. Gameplay is simulated in level
generators via pathfinding between the level’s start and finish, e.g. in [119], or via
rules regarding when players should use a mechanic, e.g. in [47], or via solvers for
optimal puzzle solution, e.g. in [117, 113]. Such simulation-based evaluations usu-
ally trivialize the player’s expected experience or aesthetics. On the other hand, [21]
uses the same trivial A* pathfinding playtraces but takes into account the computer
agent’s camera view in order to assess whether certain markers are visible or not
visible. This artificial playtrace evaluates generated levels based on the visual stim-
uli rather than purely functional aspects of player experience (i.e. completing the
level). Player precision is simulated via rule-based systems in [47] by introducing
some randomness to the timing of an artificial player’s use of a mechanic. This bet-
ter captures player experience and can be used to assess how accessible or difficult
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a game is to novice players. Ludi [10] created gameplay logs using agents as they
were learning to play the game. Similarly, [127] evaluated generated collision and
scoring rules for simple arcade games based on controllers evolved explicitly for
this game. Unlike Ludi, the evaluation was based on the average fitness of these
controllers throughout evolution, simulating how difficult it would be for a player to
learn (optimize) their gameplay towards maximizing the score. Finally, racing track
generation in [125] was informed by gameplay traces of computational agents that
simulated specific players’ skills captured via machine learning. Focusing instead
on human players’ different priorities when playing a game, levels for MiniDun-
geons [69] were evolved for different procedural personas, i.e. artificial agents with
archetypical player goals such as treasure collection, challenge (monster killing), or
survival [41].

5.3 Cases of AI-based Game Design

While the task of producing a playable game and all its facets by an artificially intel-
ligent creator is an ambitious goal, there have been significant steps towards it. The
following sections highlight important stepping stones towards fully orchestrated,
fully autonomous game design.

Angelina, in its 2012 implementation [25], scrapes information from online
sources (e.g. stories from The Guardian news site) to create simple platformer
games. Angelina evaluates the mood of the article based on natural language pro-
cessing, chooses appropriate image backgrounds and sound-bytes based on the text
contents (e.g. an image of a sad British Prime Minister if the article is a negative
piece on U.K. politics). While the generated platformer level is not affected by the
article’s content or mood, the game’s visuals and soundscape are orchestrated by the
high-level narrative of the news piece.

Game-O-Matic [130] generates games by transforming human-provided schemas
into simple but playable arcade games. Human input is provided in the form of a
graph where nodes are nouns which are transformed into game objects and edges are
verbs which are transformed into mechanics. An example is “man (node) eats (edge)
burgers (node)” which may be transformed into a game where the player controls a
“burger” chased by “man” avatars, and the game is lost if it collides with a “man”
avatar, or the player controls the single “man” avatar who wins by colliding with
all on-screen “burgers”. When combined together, the different verb-entity triplets
may create infeasible game rules [130] or games which can not be completed: the
partial game description is then modified by one of many possible recipes which
best fits the partial game description. Sprites for entities (e.g. “burger”) are based
on Google image search results for that entity’s name. Game-O-Matic transforms
human-authored concept maps (micro-rhetorics) into a complete ruleset (i.e. with
custom game mechanics, goals and instruction sets). Visuals generation is of minor
importance as it is based on a direct online search of human-provided nouns; simi-
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(a) Data Agent: in-game
footage of the latest data
adventures generator, used
with permission from [34].

(b) AudioInSpace: in-game
footage, used with permission
from [44].

(c) Sonancia: in-game
footage, used with
permission from [86].

Fig. 6: Cases of AI-based Game Design.

larly, level generation is superficial as it decides the placement and number of game
objects in the level but does not generate an elaborate level structure.

A Rogue Dream [23] uses online sources to discover associations between
game objects for a rogue-like game where a player-controlled avatar must com-
bat enemies, gather healing items and reach the exit. The four game objects (the
avatar, enemies, healing items, exit) are chosen based on the name of the player’s
avatar, which is provided as human input before generation. The avatar name, as
provided by the player, acts as a proto-narrative: semantic associations for the other
three game objects are discovered via Google’s autocomplete results. For instance,
enemies are identified as the next word in a Google query “why do avatar name
hate. . . ”. The visuals for the game objects are sprites transformed from Google im-
age searches on the names of the avatar and discovered associations. The player’s
abilities, which can be used against the enemies, are based on pre-authored rules
templates but influenced by the Google query “why do avatar name. . . ”. The game
takes place in a generated level, using fairly simple scripted algorithms which are
not influenced by the avatar’s name or any other facets.

Data Adventures [6, 7] is a suite of generators which transforms open data into
playable adventure games. Different versions of the generators placed a different
emphasis on the narrative, with the latest installment [34] having an elaborate hand-
crafted narrative regarding a murder committed by a time-traveling doppelganger
masquerading as a famous historical figure (see Fig. 6a). The player takes the role
of a detective who travels around the world to meet different non-player characters
(who are historical figures in their own right) in order to find who killed a famous
person. The only human input to the system is the name of the victim, while the
suspects, locations (i.e. levels), items, and dialogue is generated based on open data.
Using primary sources of open content such as Wikpedia for data, Wikimedia Com-
mons for images and OpenStreetMap for levels, Data Adventures recombine that in-
formation in novel (and often absurd) ways to create adventures [5]. As an exemplar
where semantically linked open data has been used to impart real-world information
into a fairly semantically-dependent generated game (as adventure games often are),
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it has been an important case for exploring ways to use crowdsourced data as input
for orchestration [4].

Game Forge [38] generates a game’s narrative and then the level in which this
narrative can take place. While the game is fairly pre-determined in terms of the
theme, tileset, visual identity, and gameplay, it is an important example of hierarchi-
cal generation where a thorough narrative (unlike proto-narratives in other examined
cases) drives the level generation. The narrative is generated as a sequence of hero
and NPC actions at specific plot points; a level layout is generated as a graph so that
the locations specified in the plot are visited in the right order. The level’s target fea-
tures (e.g. world size, number and length of side-paths) are specified by the player
and form an objective for evolving the level towards the player-specified features
and the narrative constraints. Game Forge uses the designer-provided or computer-
generated story to guide level generation, but also accounts for player preferences
as additional human input.

AudioInSpace [44] is a space shooter game where specific elements — the
weapons and the soundtrack — are generated based on the player’s in-game feed-
back (see Fig. 6b). The weapon’s bullets are represented as particles, the position
and color of which are controlled by a compositional pattern producing network
(CPPN) [120] that uses the game audio’s current pitch information and the position
of the bullet (relative to where it was fired from) as its input. This allows the audio to
indirectly control the trajectory, speed and color of the players’ bullets. The player
can control the behavior of their weapons via interactive evolution [123], choosing
their favorite weapon among 12 options. On the reverse, the player’s bullets (part of
the rules facet) and the player’s firing actions (part of the gameplay facet) affect the
audio being played. New notes occur when the bullet hits an enemy or otherwise at
the end of the current note. The new note’s pitch and its duration is controlled by a
second CPPN which takes the color and position of the last fired bullet and its time
delay as input. This creates an interesting loop where one CPPN uses the audio to
influence the weapons, while another CPPN makes the weapons’ and player’s be-
havior affect the music played. Both CPPNs can be evolved by the player who is
indirectly controlling the mapping between facets.

Sonancia [85] generates levels and their soundscapes for horror games based on
a desired progression of tension (see Fig. 6c). The model of tension defines how
tension should increase or decrease as the players get closer to the end of the level.
This tension model is generated first or provided by a game designer [84] and acts
as the blueprint which the level generator tries to adhere to. Levels are evolved so
that the level’s tension progression matches the intended model of tension. In the
level, tension increases if there is a monster in a room along the path to the exit,
and decays if there are no monsters. The generated level’s tension model is used to
allocate pre-authored background sounds to each room in the level. Each sound has
a tension value, which can be defined by an expert designer [84] or derived from
crowdsourcing [87]. Sonancia uses a hierarchical generative pipeline, starting from
a proto-narrative (the desired progression of tension) to drive the level generation
which in turn influences the background audio choices for each room.
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Mechanic Miner [26] generates game rules by adapting the source code of
a platformer game (e.g. generating a player action that sets gravity to a negative
value), and then generates levels which can only be completed (i.e. the exit can be
reached) with these new rules. Playability of generated levels is ensured by an agent
performing random actions. Mechanic miner is another instance of a hierarchical
generative pipeline, where the game rules are generated first and influence the level
generation; the generated gameplay is a trivial simulation as it uses random actions,
and is merely used to ensure playability of the generated game.

Ludi [10, 9] generates two-player adversarial games, abstract in nature and sim-
ilar to checkers or tic-tac-toe. Ludi generates all relevant facets of such games, al-
though admittedly the fact that board games of this type do not rely on visuals, audio
or narrative makes orchestration more feasible. Ludi combines rules and board lay-
out (levels) in the same “game description” which is evolved towards a plethora of
desired gameplay properties. Gameplay is simulated in most evolving game descrip-
tions (provided their rules are well-formed and not derivative of past games) by two
adversarial agents that use a policy evolved specifically for this game from a set of
pre-authored policy advisors. The produced gameplay logs are parsed to assess ob-
jective properties (e.g. completion rate, game duration) but also aesthetic properties
(e.g. drama, uncertainty). Unlike many other examined cases, orchestration in Ludi
largely follows a bottom-up approach, adapting game rules and board layouts based
on feedback from the artificial players which in turn adapt to the specific generated
game and take advantage of its board layout.

The Extensible Graphical Game Generator (EGGG) [96] is an early auto-
mated programming system that generates playable user interfaces for games that
are specified in a description language. The generated interfaces respect features of
the ruleset, such as hiding information which is intended to be hidden. In addition,
for two-player games it generates an AI player specialized to that game. EGGG is a
hierarchical generator which matches rules to visuals (as the user interface) and to
gameplay (as the AI opponent). This is the only instance among the examined cases
where the generated AI agents are intended as opponents to the end-user rather than
only for simulating gameplay as a player proxy.

The work of Karavolos et al. [58, 57] on shooter game generation based on
surrogate models offers an example where the mappings between different facets
are encoded as a computational model. Deep learning is applied on a custom corpus
of first person shooter games, where the levels and character classes of two opposing
players are used as input to predict the gameplay outcomes of the match duration
and balance (in terms of number of kills scored). The mappings between the level,
which is provided as an image of the top-down map, and the rules as parameters
referring to the players’ hit points or their weapons’ accuracy could be used instead
of simulations of gameplay. This allows for a fast (although not always accurate)
search-based generation of levels or character classes towards desired gameplay
outcomes such as a balanced long match. The system is able to make small changes
to a level created by a human or generated through a constructive process, to balance
a specific matchup against two character classes [58]; conversely, it can tweak the
character classes’ parameters to balance their match in a specific game level [57].
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This is the only instance among the examined cases where gameplay simulations
are replaced by a priori learned models.

In their work on generating WarioWare-style micro-games, Nelson and Mateas
[94, 95] proposed a four-facet model that partly overlaps with the facets of Section
2, and implemented a generator of WarioWare [173] style games orchestrating a
subset of those facets. Those four facets were: abstract mechanics (similar to the
rules facet), concrete game representation (a mixture of the visual and audio facets),
thematic mapping (similar to the narrative facet, plus the aspects of visuals that es-
tablish setting and meaning), and control mappings (subsumed in the rules facet).
The generator takes a high-level micro-narrative provided by the user (such as a
game about chasing), and finds a combination of game mechanics and sprites from
a pre-authored set to produce the narrative. It thus follows a hierarchical process that
starts from the proto-narrative facet, using ConceptNet and WordNet to decide the
mechanics and names for game objects based on a player-provided verb, and then
jointly searches the rules and visuals facets for a suitable content pair.

6 Conclusions

Throughout this chapter, we have argued that game design is a highly creative ac-
tivity as designers need to consider the audiovisual presentation, the plot and its
exposition, the rules and spatial layouts of a game as well as how their interrela-
tions might influence players’ perceptions and emotions while playing through it. In
order to impart the creativity inherent in game design to algorithms, artificial intel-
ligence must reach new heights and overcome a number of challenges. Throughout
the history of commercial games and academic projects on content generation, sev-
eral shortcuts have been taken to balance the quality of the resulting game content, in
order to be appealing to end-users, with a unique and unexpected player experience
when interacting with “perpetually fresh” content. Recent cases of AI-based game
design, surveyed in Section 5.3, highlight such shortcuts through the use of broader
databases such as Wikipedia for Data Adventures, newspaper articles for Angelina,
Google’s image search or autocomplete in A Rogue Dream, or player preference in
AudioInSpace. Due to academic efforts in the last 10 years, a plethora of new AI
algorithms have been devised for game design or game content design — and even
more non-game AI algorithms have been repurposed for these tasks.

6.1 Future Directions

The road ahead for algorithmic game design has several interesting directions. In-
deed, research efforts in all directions will be necessary for purely algorithmic game
design to be achievable.
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In one direction, the interrelations between different facets must be better im-
parted to generative systems in order to create a cohesive game that goes beyond
unrelated constituent parts. Efforts in orchestration so far feature constrained de-
sign spaces such as board games [10], arcade games [130] or adventure games [34].
Computational models so far learn patterns within a very narrow scope of games
— often the same game [121] or a game prototype [56]. Recent work in combining
learned patterns from different arcade games [105] is a promising step, although the
lack of playable output shows that extensive work is still needed in this direction.

Another important direction is in the algorithm’s ability to explain its decisions
to a designer working alongside it: explainable AI is becoming a necessity in other
fields such as data mining but is only now being considered as a feedback mecha-
nism for game designers [139]. Along with the ability to explain their decisions, the
generative algorithms should also impart a sense of intent, where each decision can
be traced to an overall goal, style or aesthetic (generated or otherwise) [51, 77]. The
ability to provide context and intent in a natural language format easily consumable
by a human audience has been argued for and actualized in several creative soft-
ware programs [63, 22, 20] but has only been attempted in very few AI-based game
designers such as Angelina [24].

Finally, an important direction is the human-computer interaction aspect of AI-
based game designers; while the focus of this chapter has been on fully automated
game design, there is a significant benefit in using AI as a companion to game de-
signers in a mixed-initiative setting [133] where both the human and the compu-
tational creator can assess, provide suggestions or take over parts of the creative
process. Research in interfaces, design paradigms, or points in the creative process
where human input is most needed [72, 59] can be of use in the short term for com-
mercial game design — where human designers prefer to be in creative control —
but also to identify key points where AI needs to be strengthened for a fully auto-
mated game designer in the longer term.

6.2 Challenges

While there is intense interest from both the game industry and the research commu-
nity for pursuing algorithmic game design, there are a number of challenges which
must be tackled or circumvented in order to make tangible progress towards a cre-
ative computational game designer.

An important challenge is the questionable capability of computational models
to capture patterns within content of the same facet (such as levels [121]) or between
facets (such as levels and rules [56]). Despite leaps of machine learning algorithms
and a reinvigorated research interest in the topic, the recent success of deep learning
is in no small part due to the vast data repositories made available. Games have
similarly enjoyed a boost in the number of titles released yearly as well as the size
and breadth of their gameworlds, levels, lines of dialog or textures. However, data
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related to games are difficult to use from a machine learning perspective for a variety
of reasons such as copyright concerns or non-uniform data formats.

On the one hand, in-game data such as textures are understandably covered by
strict copyrights. On the other hand, player data (such as game logs and churn pat-
terns) are proprietary and often carefully guarded secrets as they can inform the
design of future titles or patches. Game companies are also concerned that machine
learning systems could overfit and unwittingly recreate content from another game.
This could cause copyright infringement issues for any other company or institution
that uses such a system.

On the other hand, the broad variety of games is detrimental as far as machine
learning is concerned. Content such as levels can be formatted very differently from
one game to the next: examples include 3D levels with overlapping floors which
can not be represented as a top-down map in the same way as, for example, 2D
levels in The Legend of Zelda [171]. Similarly, while some facets of games — such
as visuals [138] — may be easy to apply machine learning to, other facets such as
the game’s ruleset are far less straightforward. Rulesets of different games would
require extensive processing to be compatible with each other and also useful as
input to a machine learning system.

6.3 Parting Words

Despite the challenges ahead, the path towards automated intelligent design within
games is exciting, especially for academic research in artificial intelligence and
computational creativity. As AI becomes ever more relevant, its application as a
creative force in the highly complex task of game design would be a milestone. An
important stepping stone towards such an end would be an increased interest and
commercial appeal from the game industry towards full game generation, to com-
plement the already burgeoning academic interest. Similar to games such as Rogue,
Elite or even No Man’s Sky which pioneered level generation and succeeded based
on it, commercially successful games which embrace full game generation would
invigorate commercial and broader public attention towards such a task. There are
important initiatives, outreach activities, and ongoing research on the topic which
we expect will bring us closer to a fully orchestrated AI-based game.
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