Characteristics of Generatable Games

Julian Togelius, Mark J. Nelson, Antonios Liapis
Center for Computer Games Research
IT University of Copenhagen
Copenhagen, Denmark

julian@togelius.com, mjas@itu.dk, anli@itu.dk

ABSTRACT

We address the problem of generating complete games, rather
than content for existing games. In particular, we try to an-
swer the question which types of games it would be realistic
or even feasible to generate. To begin to answer the question,
we first list the different ways we see that games could be
generated, and then try to discuss what characterises games
that would be comparatively easy or hard to generate. The
discussion is structured according to a subset of the charac-
teristics discussed in the book Characteristics of Games by
Elias, Garfield and Gutschera.

1. INTRODUCTION

In recent years, it has been rather conclusively shown that
artficial intelligence systems can satisfactorily generate game
content of a number of different types: textures, plants, lev-
els, maps, creatures and so on [21]. There is currently intense
interest in research and development in procedural content
generation within both academia and the game industry, as
answers are sought to technological challenges such as how
to design more replayable games and how to cut game de-
velopment costs. It is also being explored to what extent
design principles for game content can be formalised.

But could an Al system generate a complete game? By this
we mean generating the core parts of the game, such that
it if they were different, it would be a different game—not
just the same game with new content. Therefore, gener-
ating a complete game would typically mean generating at
least the rules of the game. Of course, the demarcation line
between rules and other types of content is never going to
be absolutely sharp. In some trading card games, the rules
are rather basic and the form of the gameplay is mostly de-
fined by the cards. But the general class of systems we’re
interested in here are those that generate new game rules
and mechanics, rather than new levels or models to be used
in the context of a fixed set of rules and mechanics, as is
so far the most successful application of procedural content
generation.

Why would we want to attempt to generate games? Some of
the reasons are the same as for generating game content in
general: to save human effort (and thus money), or to create
new types of games that rely on constant creation of new
sub-games. Game-generation would, for example, make it
possible to create the world’s first truly single-player games,
in the sense of games unique to a given player and/or mo-
ment in time [16]. Perhaps game-generation research may
illuminate the intellectual exploration of computational cre-
ativity [5] more than other types of procedural content gen-
eration. Besides fully automated design, automating parts
of game design has a strong connection to mixed-initiative
game design and development tools, which help a human
designer in designing games according to some vision or cri-
teria [17, 27]. Mechanizing the game-design process (or at-
tempting to do so) can also rigorously test theories of game
design and lead to a better understanding of the design
space [22, 8]. Last but not least, there is a strong con-
nection to general game playing as a testbed for artificial
general intelligence, where the generation of unseen games
is crucial for testing the generalisation capacity of artificial
intelligence algorithms [9, 20].

In fact, there are a number of recent efforts to generate com-
plete games. They are based on different types of algorithms,
and have different genres or families of games as their do-
main. They also differ in their expressive ranges, i.e. the
size of the space of games they could potentially generate.
These have met with various success, but generally it seems
to be very hard to generate complete games—much harder
than generating content for an existing game. There is only
one known example of a program generating a new game
which is good enough to be sold in a box: Yavalath [1], a
relatively simple board game. It is likely that some kinds of
games are easier to generate than others, and at this point
it would make sense to concentrate research efforts on the
type of games we might have success in generating. In this
paper, we try to identify promising domains for automatic
game generation.

A recent book by several well-known game designers, Char-
acteristics of Games [10] (hereafter CoG), aims to identify
concrete characteristics that impact the design of games. We
take this design analysis as our starting point for investigat-
ing the characteristics of generatable games. Our method
is simply to take these proposed characteristics of games in
turn, and consider what insights they suggest for the design
of game generators.

2. HOW COULD GAMES BE GENERATED?

To lay the groundwork from a technical perspective, we see
three ways in which complete games could be generated:
constructive methods, solver-based methods, and search-
based methods."

Constructive methods are those where properties of the game
are identified ahead of time, and the generator constructs
individual games by choosing combinations of the identi-
fied properties. The process does not include constrained
or objective-driven search of the game space. The earli-
est known example of game generation, Metagame [18], the
earliest game-rule generator we know of, uses a constructive
method. Metagame generates variants of chess by encod-
ing potential rule variations in a grammar of chess variants,
and then selecting specific games by choosing a production
from the grammar. One of the main issues with construc-
tive methods is that the method of construction must only
construct valid games. Metagame is deliberately designed
with a fairly narrow generative space as a result of this de-
mand, so that games sampled from its grammar are almost
always valid chess variants (it does also include a lightweight
validation process to reject some kinds of design errors in a
generate-and-test fashion).

Solver-based methods use constraint solving or logical meth-
ods to generate games. A prominent example is Smith and
Mateas’ use of answer-set programming to generate com-
plete games [23, 24]. In this work, individual game mechan-
ics were specified in the logical language AnsProlog, and
an ASP solver used to generate complete games based on
constraints—for example, the user could specify that the
game should be winnable by indirect pushing.

Search-based methods use evolutionary computation or other
stochastic search/optimisation algorithms to generate games
by searching the space of possible games [26]. This re-
quires an objective or evaluation function that assigns a
number reflecting how “good” the game is. As it seems
almost certain that to properly evaluate a game you need
to play it, evaluation functions for complete games are al-
most always simulation-based. Playing an unknown game
(“general game playing”) is in itself a hard challenge. In an
early example of search-based generation of complete games,
Togelius and Schmidhuber evolved Pac-Man-like games in
a two-dimensional grid world. The evaluation function is
meant to judge how learnable the games are by humans [25].
The probably most successful game generation system so
far, Ludi by Browne, generates simple board games similar
to Checkers, Go and Othello, through evolutionary compu-
tation. The rules are represented in a Lisp-like language
and games are evaluated using a weighted sum of several
heuristics [3]. Other examples of search-based game gener-
ation include Cook and Colton’s Angelina project [6] which
generates platformers (among other things) and Font et al’s
project to generate card games [11].

!There are conceivably other ways in which a computer
could generate a game, e.g. by inventing human-level Al and
teaching the Al to behave like a professional game designer.
However, the three approaches discussed in this section have
the merit of being concrete and not Al-complete.

3. CHARACTERISTICS OF GENERATABLE
GAMES

Below, we discuss game generation from the vantage point
of some of the characteristics presented in CoG. The char-
acteristics can shape the generation in at least two possible
ways: by constraining the generation space and by acting
as objectives. In the first case, the generator is limited in
some way so that it cannot generate games that do not have
the characteristic, either because it cannot express them in
its representation or because it throws any such games away
without evaluating them. In the second case, we are ca-
pable of expressing and evaluating games with or without
some characteristic, but we choose to search for games with
more or less of the characteristic. This way of directing the
generation is particularly useful when some characteristic is
closely tied to the qualities we want in our generated games.
Note that both solver-based and search-based methods are
capable of both optimising for objectives and enforcing con-
straints.

3.1 Basics

Co@ starts with some basic characteristics that define what
kind of game is being played, and how players learn to play
it.

3.1.1 Length of Playtime

One of the most elementary aspects of a game is how long
it takes to play. For game generation, playing time is par-
ticularly relevant for simulated play-throughs using search-
based methods. Games with longer playing times clearly
add a computational burden whenever simulation is neces-
sary. The relevant measure of playing time here is probably
the time needed to simulate the game rather than the num-
ber of decisions that need to be taken. Mahlmann et al’s
work on generating strategy games found that the major
bottleneck was the time taken to simulate playouts [14].

Note that the important measure here is the playing time for
a single game atom, or the shortest unit of meaningful play,
rather than the playing time for a complete game. In most
cases, it will be sufficient to simulate a single round of a card
game or a single level of a platform game, decomposing the
generation process accordingly.

3.1.2 Number of players

CoG categorises games into zero-player games (too trivial
to consider in this paper), “pure” one-player games playing
against the system (sudoku, Tetris, Myst, Asteroids), “one
and a half” player games where a player plays against sim-
ulated opponents (Civilization, Diablo), two-player games,
two-sided team games, one-sided team games (Left 4 Dead,
Arkham Horror), multiplayer games (three or more play-
ers) and massively multiplayer games. Among these cate-
gories, solver-based methods are ideal for generating “pure”
one-player games, provided that the system is tightly de-
fined and deterministic. The success of ASP at generating
puzzle games [24] and arcade-like [23] games—both “pure”
one-player games—lends credibility to this claim. However,
one-player games with semi-continuous space, stochasticity
and/or frequent player-environment interactions , such as
Asteroids, are difficult to solve completely due to the explo-
sion of the game state space.

“One and a half” player games rely, by definition, on Al-
controlled opponents, and can be simulated in a straightfor-
ward manner. In such simulations, the only assumption is
about the player’s behavior; in cases where simulated oppo-
nents follow the same rules as the player, using those con-
trollers to simulate the player is a fast and relatively real-
istic shortcut. Search-based methods with simulation-based
evaluation can be used to generate such games; however,
lengthy simulated playthroughs (e.g. Civilization) or a large
degree of stochasticity on the part of the controllers (e.g.
random monster damage in Diablo) can make the use of
search-based methods unrealistic. For games involving two
or more players (including one-sided team games), the inter-
action between players and different combinations of person-
ality, skill or strategy (e.g. veteran versus newbie, defensive
tactics versus rushing tactics) make simulations even more
cumbersome. While for clearly defined, deterministic games
such as card games [11] and board games [3], two players can
be simulated to a satisfactory degree, it is difficult to envi-
sion fully generatable multiplayer or massively multiplayer
games with current methods. One advantage of symmetric
two-player games is that various forms of balance between
players are useful objectives [12].

3.1.3 Heuristics

CoG (p. 29) argues that a core feature that makes games
interesting is the presence of heuristics developed as players
gain skill in a game:

Players typically gain skill by developing heuris-
tics: rules of thumb that help them play the
game. Some of these rules might be quite con-
crete (“never draw to an inside straight” in poker)
and some might be fairly vague (“develop your
pieces” in chess) ... if someone asks “how do you
play that game?” and they already know some-
thing about the rules, chances are they are look-
ing, not for even more detailed rules, but for some
basic heuristics.

This characteristic bears a certain resemblance to the idea
that players’ learning curves are an important property to
take into account when designing a game. Several existing
PCG systems generate games by aiming to produce games
whose learning curves are neither too shallow nor too steep.
Togelius and Schmidhuber [25] use learning curves as their
primary objective, targeting a “medium” learning curve by
running a machine-learning agent on generated games, and
rejecting games that the agent learns either too quickly or
too slowly.

However, heuristics are not precisely learning curves, and
the difference points to some interesting venues for future
research in automated game generation. Learning curves in
existing systems typically are estimated by taking a fixed
game-playing model (such as a neural-network controller)
and iteratively improving its weights or parameters. This
“continuous” approach to improving skill is akin to how hu-
mans improve their performance in a racing simulator, but
doesn’t as strongly resemble the idea of players gaining new
heuristic information about a game. In particular, players
use the gained heuristic information not only to play the

game, but also to conceptualise it and talk about it with
others. This scaffolding, where players build simple mod-
els of how to play a game, and name those models’ parts,
is part of what distinguishes interesting from uninteresting
games. Methods for determining whether a game supports
such scaffolding are, we propose, a key challenge for auto-
mated game generation.

Expicitly modelling players’ acquisition of discrete knowl-
edge about a game has been investigated in specific con-
texts. Educational games sometimes start from pre-specified
heuristics they hope users will develop while playing the
game: the educational outcomes. The game is then designed
around attempting to ensure that playing the game scaffolds
the acquisition of precisely this set of heuristics. To our
knowledge, such games have not yet been fully generated,
with the intended learning outcomes taken as input and a
fully generated game produced as output. However, the idea
has been used used by level generators to produce a desired
skill progression through sequencing levels. The mathemat-
ics game Refraction starts out by requiring only basic oper-
ations to solve early levels, and then progressively requires
more complex operations at the higher levels [4]. This is in-
tended to result in players developing more and more com-
plex “heuristics” about arithmetic through the process of
learning the heuristics of the game. The extent to which
acquiring specific heuristics impacts gameplay has also been
used as an analysis tool to provide feedback on game-design
prototypes [15, 13], a form of analysis that may be useful
as a component of a game-generation system that explicitly
targets the existence of such heuristic progressions.

3.2 Infrastructure

The next set of properties involves the basic infrastructure
on which games are built: their rules, standards, outcomes,
ending conditions, and other kinds of feedback to the player.

3.2.1 Rules

Rules are arguably the core feature of a game, and for an
algorithm to generate a game it needs to generate the rules
in some form. Such rules can be predefined hand-crafted
rules which can be inserted into (or removed from) the game
or parameterisable functions where their arguments can be
swapped with current game elements.

3.2.2 Standards

Co(G defines standards as “commonly accepted patterns that
many players are already familiar with”. Standards include
low-level details (e.g. a discard pile for card games, or the
W,A,S,D controls for a first person shooter) or high-level
ideas (e.g. the concept of jumping on enemies for platform-
ers, or quick-time events for modern games). Regarding the
lower-detail aspect of standards, one could consider stan-
dards to be akin to rules. Generatable games can theoreti-
cally include the use of such standards among their gener-
ated rules. Arguably, most game generators currently choose
between rules hand-crafted according to their programmers’
expert knowledge on genre standards, which means that
most generatable games are more likely to follow genre stan-
dards than not. On that account, even if rule generation
becomes more freeform in the future (using e.g. dynamic
programming), evaluating these generated rules (or combi-

nation thereof) according to their conformity to genre stan-
dards can be another measure of the learnability of the game
by human players.

3.2.3 Outcomes

Outcomes of a game include ranking in a race, number of
points scored, levels cleared, time survived etc. When gen-
erating a game, however, it is not a priori knowable what
the outcomes are. In previous work, researchers have solved
this problem by simply stipulating that there is such a thing
as score and that having much of it is good [25] or that there
are things such as winning and losing and the rule set needs
to include actions to lead to these states [3]. Some such
stipulation seems to be necessary for any game generation
method.

3.2.4 Ending conditions

An ending condition determines when the game ends; at
least in one-player or “one and a half” player games, which
are the focus of this paper, a game ends when a player “wins”.
This ending condition is important for the purposes of sim-
ulations, as a game is evaluated after the simulation ends.
Although the ending condition can also be generated, it is
important to ensure that the simulation does not go on for-
ever e.g. via a secondary timeout ending condition. Evalua-
tion of the ending condition is incorporated in the evaluation
of the game: for instance if the game ends before a game arc
is formed will result in a low objective score due to the end-
ing condition. Solver-based generation also requires ending
conditions, as the entirety of a game needs to be checked for
constraint satisfaction (e.g. that the winning condition can
be reached). Although theoretically the ending condition
could be fully genaratable (through dynamic programming),
game generators so far either have a predefined ending con-
dition or are allowed to select from a range of hand-crafted
ending conditions. It is not clear how games without end-
ing conditions could be generated: in theory, endless games
could be generated if they consist of repetitions of a game
atom of playtime (see 3.1.1) which can then be simulated
and evaluated.

3.2.5 Sensory Feedback

While an important aspect of games, generating or even as-
signing sensory feedback for generated game mechanics is
arguably an even larger problem than game generation, as it
touches upon sensory perception, musical appreciation, cog-
nition and visual taste. Granted that entire research fields
are attempting to understand these concepts as well as com-
putationally generate music and art pieces, the topic of a
generatable game’s sensory feedback falls outside the scope
of this paper. However, it is worth noting that some early
steps towards purposefully accomodating sensory feedback
in generated games are being taken by Cook, Colton and
Pease [7].

3.3 Games as Systems

At the core of games are the abstract systems of mechanics
that define their dynamics and possibility spaces. While
they do not directly control gameplay, designing the systems
level is an important aspect of producing interesting games.

3.3.1 Abstract subgames

While many contemporary games, both analog (e.g. An-
droid) or digital (e.g. Grand Theft Auto) include subgames
of varying levels of abstraction, it is somewhat early to con-
sider having generatable subgames within fully generatable
games. On the other hand, there is considerable potential
for the creation of fully generatable subgames within exist-
ing (authored) games; the simpler nature of subgames lends
itself better to the current state of game generation than cre-
ating, for instance, a fully generatable AAA game. It is also
worth considering including templates for abstract subgames
in the vocabulary of the game generator (see Section 3.2.2).

3.3.2 Snowball and catch-up

“Snowball” is the CoG term for what in cybernetic language
would be called positive feedback: the rich get richer, and
the poor poorer. “Catch-up” is the opposite. The presence of
a certain amount of catch-up could be used as an objective,
as a moderate amount of this characteristic is generally seen
as good. It is also relatively easy to measure, using Monte
Carlo-based metrics such as Browne’s “outcome uncertainty”
metric [3].

3.3.3 Complexity tree growth and game arc

The branching factor of a game is how many different actions
a player can take from a given state. The branching factor
along with other measures of complexity [2] of a generated
game can also infer the heuristics developed by players to
conceptualise it (see 3.1.3). Moreover, a game’s branching
factor largely determines whether a game is playable by a
given algorithm. As a rule of thumb, the higher a branch-
ing factor, the less effective any given algorithm is at play-
ing an unknown game — although certain algorithms such
as Monte Carlo Tree Search are more capable of handling
games with larger branching factors such as Go. As search-
based generators require a simulation with an adequate Al
controller in order to evaluate a generated game’s quality,
games with exceedingly high branching factors are impossi-
ble to generate at the current state of Al research. Although
not tied to Al-controlled agents, solver-based methods also
suffer from high branching factors as the number of possi-
ble action combinations that need to be tested for feasibility
becomes excessive.

One of the characteristics of games is the game arc, which
is the graph of the branching factor of a game at different
stages of gameplay. Many games exhibit an upwards con-
vex arc, where there are few options at the beginning of
the game, many in the middle stage of the game, and fewer
again towards the end. Games as different as Monopoly,
Chess and Civilization arguably exhibit such a game arc, al-
though arcade games such as Tetris and Pac-Man have less
of a game arc (or an arc with a different shape). Having
an upwards convex game arc, together with a minimum and
maximum branching factor at each stage of the game, can
be a useful addition to both search-based and solver-based
game generation. This is related to (but not the same as)
the Monte Carlo-based tension and uncertainty metrics pro-
posed by Browne [3].

3.4 Indeterminacy
Indeterminancy is a common feature of both analog games
(dice, random card draws) and digital games (randomized

damage in Diablo or Starcraft, randomized opponent behav-
ior in Ms. Pacman). The more actions with uncertain out-
comes and the more uncertain outcomes per action, the more
difficult it is to assess a full playthrough. Solver-based meth-
ods need to account for all possible outcomes and thus can
only handle the most basic indeterminancy. Search-based
methods can use an objective score based on the average of
multiple simulations, thus limiting the effects of indetermi-
nacy. However, the higher the degree of indeterminacy, the
more simulations need to be averaged; granted that simula-
tions already are the bottleneck of search-based generation,
it may be unrealistic to search for fully generatable games
with high indeterminacy.

3.5 Player Effort

Players invest substantial effort into games in a number of
ways, and good design is distinguished from bad design in
part by whether it makes good use of this effort, directing
it in a way that is interesting rather than merely tedious.

3.5.1 Costs

CoG enumerates several kinds of costs that players incur
when playing a game. These include monetary cost of the
game and the equipment required to play it (e.g. gaming con-
sole for console games, ball and glove for baseball), as well as
the prerequisite skills necessary to play the game (e.g. phys-
ical strength for American football or hand-eye coordination
for first-person shooters). Within generatable games, skill
prerequisites could realistically be factored as constraints or
evaluations. Generated games can require that the reaction
time necessary to complete a game is above the minimal
reaction time of humans.

3.5.2 Rewards

Within a generatable game, identifying rewards can be quite
challenging; however, a common reward in all generated
games would be winning (or completing) the game. Granted
that generatable games, be they generated via solvers or
search, will have an ending condition, it is generally easy
to evaluate such a reward. More low-level rewards can also
be generated, such as incrementing the score value for per-
forming an action such as eating a pill or killing a monster.
Teasing apart, however, how the different rewards interact
with each other and with the winning condition can be quite
challenging and likely requires a measure of reward/effort
ratio.

3.5.3 Downtime & Busywork

Evaluating downtime in simulated playthroughs or expanded
solutions of a game could look into the amount of game ticks
where no action was performed. However, this will greatly
depend on the game genre, the type of feedback, and the
goal of the downtime; waiting for a moving platform to re-
turn to the player is different than waiting for a ball to drop
in Peggle (which is accompanied with very satisfying visual
and aural feedback). Moreover, simulating the downtime of
a reluctant player is much more complex than creating an ef-
ficient AT for solving the game, and could well be beyond the
current capabilities of research in the field of agent control.

Busywork, i.e. the parts of the game which are not con-
sidered fun or do not require any skill (e.g. setting up a

board game or the initial build sequence in Starcraft), is even
more complicated to evaluate without an accurate model of
a player’s fun. Despite research into modeling a player’s
experience in existing games [28], assessing a player’s enter-
tainment in completely unseen games is much less straight-
forward. If a measure of player reward can be estimated,
however, an assumption could be made that busytime con-
sists of actions which do not provide a short-term reward or
do not bring the player closer to a long-term reward.

3.6 Superstructure

The Superstructure section of CoG elaborates on elements
of a game which do not pertain to gameplay and occur “out-
side of the game”, such as the metagame, the game’s theme
or lifetime. Evaluating the superstructure of fully generat-
able games would require a quite elaborate AI system en-
compassing higher-level knowledge on game genres, existing
games and even market or public opinion data. Such an Al
would then act as a game producer [19] able to cluster games
within existing genres, and predict a game’s potential life-
time or popularity based on data of previous games of the
same cluster. Developing such an Al is more ambitious in
scope than the examples laid out in this paper, and would
require a very different approach (such as machine learn-
ing from big data on game ratings, user feedback or sales
figures).

4. CONCLUSION

In this paper we have identified three different ways in which
complete games could be generated. We have also discussed
which types of games would be more or less feasible to gen-
erate, and what properties of games to look for when gener-
ating them. To structure the space of games, we utilised a
subset of the characteristics outlined in CoG. The reader can
see this as a set of hypotheses regarding the what and how
of game generation, hypotheses which can be tested by im-
plementing game generators and seeing how well they work.
Even if we are wrong in some specifics, we believe that this
paper can help structure the discussion around game gen-
eration. Following this methodology can also be seen as an
empirical test of the material in CoG: using these identi-
fied characteristics of games to implement game generators
is a sort of acid test of whether we have really identified
the important features that characterise games with enough
specificity to use them constructively.

5. REFERENCES

(1] C. Browne. Yavalath, 2007.

[2] C. Browne. Elegance in game design. IEEE Transactions
on Computational Intelligence and Al in Games,
4(3):229-240, 2012.

[3] C. Browne and F. Maire. Evolutionary game design. IEEE
Transactions on Computational Intelligence and Al in
Games, 2(1):1-16, 2010.

[4] E. Butler, A. M. Smith, Y.-E. Liu, and Z. Popovié. A
mixed-initiative tool for designing level progressions in
games. In Proceedings of the 26th Symposium on User
Interface Software and Technology, pages 377-386, 2013.

[5] S. Colton and G. A. Wiggins. Computational creativity:
The final frontier? In Proceedings of the 20th European
Conference on Artificial Intelligence, pages 21-26, 2012.

[6] M. Cook and S. Colton. Multi-faceted evolution of simple
arcade games. In Proceedings of the IEEE Conference on
Computational Intelligence and Games, pages 289—296,
2011.

[7]

(8]

(9]

[10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

21]

(22]

(23]

[24]

(25]

[26]

M. Cook, S. Colton, and A. Pease. Aesthetic considerations
for automated platformer design. In Proceedings of the Sth
Artificial Intelligence and Interactive Digital
Entertainment Conference, pages 124-129, 2012.

J. Dormans. Simulating mechanics to study emergence in
games. In Proceedings of the AIIDE Workshop on Artificial
Intelligence in the Game Design Process, pages 2-7, 2011.
M. Ebner, J. Levine, S. Lucas, T. Schaul, T. Thompson,
and J. Togelius. Towards a video game description
language. In Artificial and Computational Intelligence in
Games, pages 85—100. Dagstuhl Publishing, 2013.

G. S. Elias, R. Garfield, and K. R. Gutschera.
Characteristics of Games. MIT Press, 2012.

J. M. Font, T. Mahlmann, D. Manrique, and J. Togelius.
Towards the automatic generation of card games through
grammar-guided genetic programming. In Proceedings of
the 8th International Conference on the Foundations of
Digital Games, pages 360-363, 2013.

V. Hom and J. Marks. Automatic design of balanced board
games. In Proceedings of the 3rd Artificial Intelligence and
Interactive Digital Entertainment Conference, pages 25—30,
2007.

A. Jaffe, A. Miller, E. Andersen, Y.-E. Liu, A. Karlin, and
Z. Popovié¢. Evaluating competitive game balance with
restricted play. In Procedings of the 8th Artificial
Intelligence and Interactive Digital Entertainment
Conference, pages 26—-31, 2012.

T. Mahlmann, J. Togelius, and G. N. Yannakakis.
Modelling and evaluation of complex scenarios with the
strategy game description language. In Proceedings of the
IEEE Conference on Computational Intelligence and
Games, pages 174-181, 2011.

M. J. Nelson. Game metrics without players: Strategies for
understanding game artifacts. In Proceedings of the AIIDE
Workshop on Artificial Intelligence in the Game Design
Process, pages 14-18, 2011.

M. J. Nelson and M. Mateas. Towards automated game
design. In AI*IA 2007: Artificial Intelligence and
Human-Oriented Computing, pages 626—637. Springer,
2007. Lecture Notes in Computer Science 4733.

M. J. Nelson and M. Mateas. An interactive game-design
assistant. In Proceedings of the 13th International
Conference on Intelligent User Interfaces, pages 90-98,
2008.

B. Pell. Metagame in symmetric, chess-like games. In
Heuristic Programming in Artificial Intelligence 3: The
Third Computer Olympiad. Ellis Horwood, 1992.

M. O. Riedl and A. Zook. AI for game production. In
Proceedings of the IEEE Conference on Computational
Intelligence in Games, 2013.

T. Schaul, J. Togelius, and J. Schmidhuber. Measuring
intelligence through games. arXiv preprint 1109.1314, 2011.
N. Shaker, J. Togelius, and M. J. Nelson. Procedural
Content Generation in Games: A Textbook and an
Overview of Current Research. Springer, 2014. (To appear).
A. M. Smith. Mechanizing Exploratory Game Design. PhD
thesis, University of California, Santa Cruz, December 2012.
A. M. Smith and M. Mateas. Variations Forever: Flexibly
generating rulesets from a sculptable design space of
mini-games. In Proceedings of the IEEE Conference on
Computational Intelligence and Games, pages 273-280,
2010.

A. M. Smith and M. Mateas. Answer set programming for
procedural content generation: A design space approach.
IEEE Transactions on Computational Intelligence and Al
in Games, 3(3):187-200, 2011.

J. Togelius and J. Schmidhuber. An experiment in
automatic game design. In Proceedings of the IEEE
Symposium on Computational Intelligence and Games,
pages 111-118, 2008.

J. Togelius, G. N. Yannakakis, K. O. Stanley, and

27]

(28]

C. Browne. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on
Computational Intelligence and Al in Games,
3(3):172-186, 2011.

M. Treanor, B. Blackford, M. Mateas, and I. Bogost.
Game-O-Matic: Generating videogames that represent
ideas. In Proceedings of the 3rd Workshop on Procedural
Content Generation, 2012.

G. N. Yannakakis, P. Spronck, D. Loiacono, and E. Andre.
Player modeling. In Artificial and Computational
Intelligence in Games. Dagstuhl Publishing, 2013.

