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ABSTRACT
This paper presents a method for modeling player decision
making through the use of agents as AI-driven personas.
The paper argues that artificial agents, as generative player
models, have properties that allow them to be used as psy-
chometrically valid, abstract simulations of a human player’s
internal decision making processes. Such agents can then be
used to interpret human decision making, as personas and
playtesting tools in the game design process, as baselines for
adapting agents to mimic classes of human players, or as be-
lievable, human-like opponents. This argument is explored
in a crowdsourced decision making experiment, in which the
decisions of human players are recorded in a small-scale dun-
geon themed puzzle game. Human decisions are compared
to the decisions of a number of a priori defined“archetypical”
agent-personas, and the humans are characterized by their
likeness to or divergence from these. Essentially, at each
step the action of the human is compared to what actions
a number of reinforcement-learned agents would have taken
in the same situation, where each agent is trained using a
different reward scheme. Finally, extensions are outlined for
adapting the agents to represent sub-classes found in the
human decision making traces.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems

General Terms
artificial intelligence, game design, decision making

1. INTRODUCTION
This paper describes an approach to modeling, grouping

and interpreting players based on their inferred utility func-
tion modeled through reinforcement learning in the form of a
generative agent. It proposes how this could be extended to

adapt to derived player groups through a process of cluster-
ing and inverse reinforcement learning. The example pre-
sented here uses trained Q-learning agents with manually
configured reward parameters as a priori defined personas,
but in principle any agent with a trainable, configurable re-
ward function could be used to generate easily interpretable
generative player models for player characterization and de-
sign support.

Player modeling in its various expressions facilitates at
least one of four purposes: the description, prediction, in-
terpretation, and in some cases reproduction of player be-
havior [9, 14]. All four purposes are rarely addressed simul-
taneously in the same model for theoretical and practical
reasons. An interest in understanding groupings of players
might not necessarily entail an interest in accurately predict-
ing or reproducing their behavior. Inversely, in order to cre-
ate a player model that reproduces player behavior, it might
not be necessary to account for why players exhibit a certain
behavior in-game — only that a reproduction is convincing
to a human spectator. Still, certain areas of investigation
or specific applications might mandate the pursuit of player
models that address all four purposes at once.

This paper expands on previous work [5] and attempts
to span all four purposes outlined above: it aims to de-
scribe, predict, and reproduce player decision making with
the overarching goal of facilitating its interpretation. By
modeling players as decision making agents and using these
models to characterize players by their induced motivations,
a high-level sketch of the players’ decision making processes
is drawn facilitating the interpretation of their preferences.
The approach draws on the theoretical framework of prospect
and decision theory, considering every action in a game a de-
cision made under uncertainty [11, 8].

This approach is based on three fundamental assumptions:
The first assumption is that players exhibit a particular de-
cision making tendency or style when playing a particular
level or game, and that this tendency can be captured and
expressed by approximating a utility function that shapes
their decisions in-game. This utility function is latent in
the sense that it cannot be observed directly. The second
assumption is that in order to validly model this assumed
utility function, the elements and procedures of the utility
function, as a psychological construct, should be explicated
in a manner that accounts for the key components and pro-
cesses of the player’s psychology, the outcomes of which can
be empirically observed. The third assumption is that a pri-
ori outlined models of player decision making styles can be
used as archetypes or personas by comparing their genera-



tive output with the empirical observations of human deci-
sion and that a well-motivated artificial process that gener-
atively mimics a player constitutes a valid abstract model of
the player’s internal process.

In the following section, we will first discuss related work
from psychology and artificial intelligence, and the epistemo-
logical assumptions in that work. In Section 3 we explain
the general structure of our experiments as well as the artifi-
cial intelligence methods involved. Sections 4 and 5 describe
our method for data collection from human players, and the
results of our attempts to classify human playtraces accord-
ing to agreement with generative agents. We conclude by
discussing the potential and limitations of the current work
and overall methodology.

2. RELATED WORK
The presented method of player decision style modeling

draws in parallel on the literatures on decision theory, psy-
chometric validity, and player modeling. This section out-
lines the insights drawn from each field and motivates the
synthesis of the three.

2.1 Decision Theory
Psychology, behavioral economics and game theory share

a common history under the umbrella of decision theory
which tries to describe decision making through formal mod-
els. One of the central ideas of decision theory is that any
decision a human makes under uncertainty, due to incom-
plete information or a stochastic outcome, is guided by a
utility function that determines the decision makers willing-
ness to take risks for an expected reward.

Utility to the decision maker is considered idiosyncratic,
and decision theory makes no general claims about this, but
typically defines a particular conception of utility a priori.
Whatever is desirable to the decision maker is a potential
source of utility to various degrees. It prescribes that, given
its conception of utility, an agent acts rationally when it
optimizes, within its computational constraints, its actions
to achieve it [8]. The utility function describes the decision
maker’s risk/reward policy for this optimization.

Here, the purpose is to develop a method for decision mod-
eling that is relevant for a wide range of computer games,
including ones that support (even if they might not suggest)
unstructured play in the game world — or have competing
or even conflicting goals. For that reason it is most rele-
vant to interpret any player input to the game as a decision
that is expressive of a utility function that is shaped both by
the interaction between the game’s overt rules, its expressive
space in total, and the player’s motivations and capabilities.
Any action the game affords the player [4] becomes a po-
tential source of utility. If any action in the game can be
taken as an output of the player’s utility function, this in
turn allows for inducing the player’s concept(s) of utility by
approximating and then interpreting the utility function.

Since the utility function weighs the values of the con-
stituents of future game states, relative to the risk involved
with potentially attaining them, it is necessary to define
these constituents before attempting to model the utility
function — constructing a selection of affordances that could
provide utility in the game. This comes with the risk of iden-
tifying only a subset of the actual affordances or perhaps
picking the wrong ones altogether.

Once an acceptably large set of possible affordances are

defined, an approximation of the player’s utility function
could technically be accomplished by any generative compu-
tational method capable of simulating the human decision
maker, rule-based or search-based. However, since the in-
terest here is not only reproducing the utility function, but
also interpreting the computational generation of a given
utility value as an abstract representation of the player’s
same process, it is necessary to apply methods that allow
for the inspection and interpretation of the weightings of
the affordances behind the utility function. Once success-
fully constructed, such a model is then interpreted as an
abstract simulation of the player’s decision making process.
The following section briefly argues why this methodological
approach can be considered appropriate in terms of psycho-
metric validity.

2.2 Validity in Latent Trait Modeling
To construct player models that aim to discriminate be-

tween players or predict their actions, by modeling a process
that is completely internal to the psychology of the player
and therefore unobservable, an argumentation for the va-
lidity of the proposed model of the player’s psychology is
necessary. The work presented here attempts to induce the
player’s sources of utility, treating the utility function as a
latent trait or state within the player, motivating her behav-
ior. Recent research in psychometrics argues that a partic-
ular test or model for measuring a latent attribute is valid
if “a) the attribute exists and b) variations in the attribute
causally produce variations in the measurement outcome.”
[2]. Although at first glance this seems intuitive, the ne-
cessity of a causal relation between the attribute and the
measurement outcomes puts an explanatory onus on the
theoretical framework and assumptions of the model. A
psychological concept that cannot produce theoretical rea-
sons for assuming the modeled processes in the psychology
of the player runs the risk of regressing to operationalism
where the process in the player is defined as what is mea-
sured through the empirical methods [7], potentially mis-
taking outcome correspondence for process correspondence.
To avoid this risk, a model that claims to represent un-
observable processes in the psychology of a player needs a
clear mechanistic chain of inference from the context to the
player action to facilitate description, prediction, interpreta-
tion, and reproduction. Otherwise, it cannot claim to model
the internal process of the player, but only produces a po-
tentially unrelated, even if effective, mapping between the
input and output states [1].

This is specifically what this work attempts to address
by developing a model of player decision making that takes
into account high-level characteristics of the human decision
process, while remaining reasonably intelligible, by making
strong claims about what aspects of a decision problem are
evaluated by the player and what importance the player at-
tributes to each aspect in the form of a persona.

2.3 Player Modeling
Yannakakis et al. [14] present a high-level overview of

player modeling approaches and argue that player models
always, at least in an abstract sense, incorporate the whole
player either overtly or tacitly. The paper usefully separates
model-based and model-free player modeling approaches,
while pointing to the fertile, hybrid middle ground between
the two. From this perspective, the approach taken here



is model-based in the sense that it makes strong assump-
tions about the psychology of the player and represents it in
the form of agent-personas, but the actual agent training is
model-free in the sense that a Q-learning agent is used. As
such, the method presented here is a hybrid one.

Smith et al. [9], present a useful, inclusive taxonomy of
player models, identifying opportunities for filling gaps in
the already known gallery of approaches to player model-
ing. They present four facets of player models that can be
used to describe their kind : the scope, purpose, domain and
source of the player model. The method that is presented
here would, under their taxonomy, be categorized as a Class
Induced Generative Action model. Smith et al. specifically
note that “Class models are more difficult to motivate in an
academic context, requiring either justification of a theory
of stereotypes or aggregation of sufficient individual data to
build up class descriptors. Thus, we expect class models
to be used more in practice than they are reported.”. This
precisely touches upon the considerations of validity out-
lined in the preceding section, and helps explain why the
class based category of academic player models has no ex-
amples in Smith et al.’s survey. The quote also describes the
potential applicability of class based models: Stereotypical
players, or personas, are widely used in game design and
development for guiding content creation [12, 3], taking the
place of play testers when actual play testing is infeasible
or undesirable. Typically, a game designer uses the persona
as a starting point for imagining what the persona would
do in a particular part of the game, or actually plays the
game while informally simulating the persona’s play style.
This implies that the game designer has a mental model of
the decision making process of the persona, typically based
on previous experience and the interpretation of qualitative
and/or quantitative data from play testing, metrics, etc.
The purpose of our modeling method is obviously not to
supplant this part of the game design process, but to pro-
vide the game designer with an external representation of
not only how different personas would play the game, but
at the abstract level also why. Such a model could form
a point of comparison and contrast to the game designer’s
internal mental model or become part of a mixed-initiative
content authoring tool, suggesting content suitable for one
or more personas, configured by the designer, adapted to
human data, or built as a a hybrid of the two.

3. TESTBED
For the purpose of exploring the argument presented above,

a simple testbed game was created along with a set of archetyp-
ical generative agents.

3.1 Game Environment
The game environment, MiniDungeons (see Fig. 1), aims

to evoke the fundamental mechanics of a rogue-like dungeon
exploration game. It puts the player in a two-dimensional
dungeon on a grid of 12 by 12 tiles, viewed from a top-down
perspective. Tiles are either passable or impassable to the
player. Passable tiles may be occupied by monsters, rewards,
potions, the dungeon entrance or the dungeon exit. All tiles
and their current state is visible to the player, so the game
applies no notion of fog-of-war or limited visibility. The
player has a hitpoint counter and a treasure counter, and
the player loses the level if her hitpoints (HP) drop to zero.
The player starts each level at the dungeon entrance with

Figure 1: The game environment on one of the levels used in
the experimental protocol. The hero, shown in gray armor,
moves around the level collecting treasures (brown closed
chests), potions (red bottles) and killing enemies (green gob-
lins). The hero starts at the entrance (stairway leading up,
left of the screen) and the level ends when the exit is reached
(stairway going down, right of the screen). The hero’s hit-
points are shown at the bottom, along with the number of
treasures collected and the most recent event.

40 HP, and every turn can move to any adjacent, passable
tile. When moving onto a monster tile, combat is resolved
instantly, the monster is removed and the player loses a num-
ber of HP. Combat is stochastic: enemies may deal between
5 and 14 points of damage, determined each time the level
starts. Moving onto a treasure tile removes the treasure and
increases the treasure counter by one, while moving onto a
potion tile removes the potion and increases the player’s HP
by 10 (up to a maximum of 40). If the player moves onto
the dungeon exit, the level is completed.

The number of tile types and allowed player actions is very
limited, and monsters do not move. Hidden information is
only a factor in the game for combat actions, as enemies
deal a variable amount of damage, but the damage range
is quickly induced after a few rounds of combat. For all
purposes, the complete game rules are quickly learned by
human players and are simple enough to potentially allow a
number of agent construction approaches.

The relatively small size of the level and the fact that it is
a discretized space, results in a high decision density. Even a
single action, such as moving to an adjoining empty tile, sig-
nificantly changes the game state in terms of remaining steps
to the exit, monsters, potions, and treasures. This means
that any input that significantly changes the game state en-
tails a specific decision. The bounded number of affordances
in this testbed limit the number of utility sources that must
be considered when constructing an agent-persona. Finally,



the small level size means that most playthroughs can be
completed relatively quickly.

3.2 Generative Agents
To produce an agent representative of archetypical play-

ers, any technique capable of incorporating the concept of a
utility function would technically be a possibility. Any re-
inforcement learning technique satisfies these requirements,
including any form of dynamic programming, Monte Carlo
methods, and temporal-difference learning [10]. Among them,
one-step Q-learing was selected for its simplicity as well as
its ability to handle the stochastic nature of combat im-
plemented in the testbed game. Additionally, the small
gameworld and limited number of hero moves in each level
position permit the use of a lookup table for storing state-
action pairs. In an attempt to maintain the Markov property
of each state, states in the lookup table consist of the en-
tire gameworld (including passable and impassable tiles, the
hero’s location and the location of undefeated monsters and
uncollected treasures and potions) as well as an abstraction
of the hero’s hitpoints. The latter is encoded as an integer
with 4 possible values, with 0 for 1-5 HP (can certainly not
defeat any monster), 1 for 6-14 HP (is likely to die from a
monster), 2 for 15-30 HP (can defeat at least one monster)
and 3 for 31-40 HP (will not benefit to the full extent from
a potion). The addition of these hitpoint ranges to the state
description implicitly includes a model of the environment
since the enumerators were selected based on the damage
range of monsters and the HP healed by potions; although
one of the advantages of temporal-difference learning is its
ability to operate without a model of the environment, the
addition of hitpoint enumerators aimed to speed up conver-
gence of the Q-learning process.

In Q-learning [13], the agent in a particular state s per-
forms an action a (move up, down, left or right) and observes
the subsequent state s′. The Q(s, a) value is then increased
by α[r + γmaxaQ(s′, a) −Q(s, a)], where r is the reward in
state s′, α is the learning rate and γ is the discount factor of
future rewards. For training the agents in the presented ex-
periment on a specific game level, 2.5·105 games were played
with α = 0.5 and γ = 0.9. During training, the action with
the highest Q value was selected with a likelihood of 1−ε (ε-
greedy); in the experiments detailed in this paper, ε starts
at 1 and starts decreasing linearly after 2500 games from
ε = 1 to ε = 0.1 at the end of the training session. When
not selecting the highest Q value or in unvisited states, ex-
ploration favors the least often taken action in that state.

The reward function of the Q-learning agent is simply the
model of the player’s utility function. In order to produce
multiple different personas for comparisons with players, a
number of distinct agents were developed which had differ-
ent playing styles (see Table 1). All possible outcomes of an
action are assigned rewards and each agent (except Baseline)
receives a single additional reward; this is expected to create
distinct behaviors each emphasizing a particular affordance
as a source of utility. While more elaborate strategies with
multiple rewards could be included, this paper focuses on
“archetypical” agents which are straightforward to under-
stand or modify by designers.

4. DATA COLLECTION
In order to collect human decisions in the form of play-

traces in the game environment, a crowdsourcing experiment

Table 1: Description of agents.

Agent (Abbrv.) Playing Style

Baseline Player (B) Reach exit.
Runner (R) Minimize moves.
Survivalist (S) Minimize risk.
Monster Killer (M) Kill all monsters in level.
Treasure Collector (T) Collect all treasure in level.

Table 2: Rewards r for specific game events.

Agent
Event B R S M T

Killed monster 1
Was killed -1
Reached exit 0.5 0.5 0.5 0.5 0.5
Collected treasure 1
Moved -0.01

was conducted. The experiment placed the game on a public
webpage which was advertised via e-mail and social media.

The starting screen informed the participants that they
would be taking part in an experiment concerning computer
games, but not its goals of modeling decision making styles.
Upon starting, participants had the option of voluntarily
providing their name and e-mail address and were informed
that participants who chose to do so would enter a lottery
and a competition. One participant would be drawn at ran-
dom and additionally the participant who “did best” would
receive a prize as well. In order to ensure variation in the
players’ concepts of utility, the notion of what constituted
best was not explained and left to the player’s imagination.
This design choice was expected to motivate players to ex-
hibit different play styles, i.e. allocating different priorities
to reaching the exit of the level, avoiding damage, killing
monsters, or collecting treasures and potions. By the same
logic, the decision to participate in the competition and lot-
tery was left to the player, since we assumed that this would
be of utility to some players and irrelevant to others.

Following a brief introduction on the mechanics and vi-
suals of the game, participants began play on a “tutorial
level”, which they were allowed to replay as many times as
they wished, followed by 10 “real levels” (see Fig. 2), each of
which they could play once (i.e. without replays if the hero
died). Between levels, players were presented with a sum-
mary screen of their previous level, with information on the
hero’s final HP, monsters killed, treasures collected, potions
drunk, actions taken and percentage of level explored. As
with the choice of leaving the notion of best performance un-
clear in the starting screen, showing as many diverse statis-
tics as possible was expected to elicit different play styles
among participants. All player actions on every level were
logged and stored in an online database.

Apart from the hand-crafted tutorial level, the levels used
in the protocol were created via a mixed-initiative design
process. Dungeons were generated via constrained genetic
algorithms according to the process described in [6], followed
by manual adjustments in order to increase the range of in-
teresting, risky actions and the rewards they offer. Most
levels have multiple paths to the exit, each path needing
different degrees of combat or no combat at all. All levels
also have side passages and diversions, with treasures and



Tutorial Level 1 Level 2 Level 3 Level 4 Level 5

Level 6 Level 7 Level 8 Level 9 Level 10

Figure 2: The levels used for the data collections experiment. The tutorial level is hand-crafted, and could be played multiple
times. The “real” levels (1-10) were played only once (no retries if the hero died) and were created in a mixed-initiative fashion.

potions often guarded by monsters, but at times also un-
guarded, either at the end of a long side passage or along
a path to the exit. Finally, monsters are usually placed in
corridors allowing no way through except via combat; some
levels (such as level 8) also include unavoidable monsters on
the path from entrance to exit.

4.1 Human Playtraces
38 players successfully completed all 10 levels of the ex-

periment. Some of the most consistent behavioral patterns
across players was that of treasure and potion collecting,
since both were collected quite consistently by most users.

While treasures were never explicitly deemed important
and serve no in-game purpose, the name itself and its sig-
nificance in many role-playing games plausibly made sev-
eral players strive towards collecting all of them; the fact
that, apart from hit points, treasures collected was the only
other statistic visible on the user interface may have also
contributed to this. Although not all players targeted trea-
sures, 32 of the 38 players finished the levels with more than
60 total treasures (out of 70). Potions, on the other hand,
were often collected by necessity in order to survive com-
bat with monsters which were, for the most part, guarding
treasures. As such, it is not surprising that most players
collected potions, although there was not as obvious or con-
sistent a drive to collect potions as there was for collecting
treasure; out of 38 players, 22 finished the levels with more
than 30 total potions (out of 40), and 11 with more than 35.

In terms of actions taken and tiles explored, little variation
between players existed, although the (few) outliers are of
interest. Two players finished all 10 levels having visited
349 and 395 tiles in total, respectively, which compared to
the average 594.4 explored tiles across players indicates that
they were trying to complete each level quickly, possibly due
to lack of interest or in order to see the next level.

In terms of monsters killed, player behavior was less con-
sistent: since every level contained 8 monsters, even with
the help of potions the likelihood of defeating all of them
was slim due to the stochastic nature of combat. Due to
the fact that each level had different needs for killing mon-
sters (such as unavoidable monsters for reaching the exit),
there were few consistent patterns either between players or
between levels. The data indicates, however, that players
did not explicitly target killing monsters as their goal, pos-

sibly because they had no chance of replaying the level if
they died. Of the 38 players, only 13 finished the levels with
more than 60 total monster kills (out of 80) and only 5 with
more than 70. Even players who collected all treasures in
all levels did not succeed in killing all the monsters in every
level, and no player reached 80 out of 80 monster kills.

An interesting visual aid for qualitatively assessing the
behavior of different players is the level’s “heatmap”, i.e.
the tiles visited by the player during her playthrough. Fig. 3
shows some indicative heatmaps of different players on the
same level, which illustrate the different player behaviors.
Certain players acted as“completionists”, and explored most
of the level, collected all the treasure, drank all the potions
and killed all the monsters (Fig. 3a). Other players rushed
to the exit, killing only the minimal number of monsters
and ignoring treasures and potions even if they were not
guarded by monsters (Fig. 3e). Many players collected the
unguarded potions and treasures, and a few guarded ones if
the risk was limited (Fig. 3c) while others did not accurately
assess the risk involved and died; Fig. 3b and Fig. 3f are
particularly good examples of the latter, since the players
could have collected the unguarded potions before attacking
the monster which killed them.

4.2 Artificial Playtraces
The five generative agents of Table 1 were trained for each

level of the user study. Each agent was trained via 2.5·105

playthroughs, using the parameters described in Section 3.2.
Once training was completed, exploration and learning were
disabled (α = ε = 0) and 20 test playthroughs of the level
were performed to assess the agent’s performance — unless
otherwise noted, statistics in this section will refer to the
average of those 20 playthroughs.

The behavior of the generative agents was largely depen-
dent on the level in which they were trained. Table 3 in-
cludes some indicative game statistics of the agents’ overall
playthrough of levels 1 to 10, which provide some insight on
the agents’ behavior. In several levels the Baseline (B), the
Runner (R) and the Survivalist (S) agents had very similar
behaviors as they took the shortest path to the exit (see
Fig. 4a, where their heatmap is identical); this was due to
the fact that the shortest path to the exit usually did not
contain enough monsters to kill the player (which would be
detrimental to the Survivalist agent). Despite such similar-



(a) (b) (c)

(d) (e) (f)

Figure 3: Heatmaps of selected players in Level 2. Some
acted as “completionists”; others rushed to the exit. Many
players only collected guarded items if the risk was limited
while others took excessive risks and died. The heatmaps in-
dicate that a single level allows for different decision making
styles in spite of the apparent simplicity of the testbed.

Table 3: Game statistics of each artificial agent for the entire
playthrough of 10 levels. With the exception of Times Died,
values are averaged across 20 test runs; Times Died includes
all 200 playthroughs tested.

Agent
Statistic B R S M T

Monsters 22.7 22.6 21.4 53.8 48.2
Treasures 9.4 7.8 11.0 9.4 48.9
Potions 2.1 2.0 3.1 16.1 3.7
Tiles Explored 236 230 244 302 328
Times Died 13 22 0 63 169

ities, agent S did not die in any of the 200 runs (20 runs of
each of the 10 levels), while agent B died 13 times, agent
R died 23 times, agent M died 63 times and agent T died
169 times. The high death rate of Monster Killer (M) and
Treasure Collector (T) agents is due to the fact that, since
they were not penalized for dying, the agents took unneces-
sary risks to kill monsters and collect treasures, respectively.
While they were not as thorough in clearing the entire level
as human players, agent M finished all 10 levels with 53.8
total monsters killed (out of 80) while agent T finished all
10 levels with 48.9 treasures (out of 70), far more than other
agents. Of the remaining statistics it is worth noting that the
Runner agent finished all levels with the lowest number of
tiles explored, although agents B and S have only somewhat
higher values. Finally, the Monster Killer agent collected the
largest number of potions in order to survive more combat
encounters and achieve more monster kills. The Survivalist
agent was also expected to collect a fair number of potions,
in order to increase the chance of surviving, but the fact
that most levels did not have enough unavoidable monsters
between the dungeon entrance and the exit made such a
strategy redundant except in special cases (see Fig. 4f).

5. RESULTS
In order to compare player decisions to agent-persona de-

cisions, a simple metric was defined: for each player’s play-

(a) Agent B, R
or S

(b) Agent M (c) Agent T

(d) Agent B (e) Agent R (f) Agent S

Figure 4: Some indicative heatmaps of trained agents on
Level 2 (Fig. 4a–4c) and Level 8 (Fig. 4d–4f). The different
playstyles of the agent-personas are showcased, although in
Level 2 agents B, R and S all share the heatmap of Fig. 4a.

trace, we replay the whole game and at each point in time,
we input the state description to all of our artificial agents,
and compare the player’s decision to the decision of the dif-
ferent agents. Essentially, we ask: “What would Q do?”.
This metric expresses the degree of agreement on next best
action between the individual player and the agent-persona.
It is directly grounded in the theoretical considerations of
decision making outlined above, and assumes that for every
given state of the game, an agent-persona that is adequately
representative of a player in that particular state will select
the same action as the player. More precisely, the met-
ric was calculated as the number of agent-persona/human
player agreements Na for each decision made in the human
decision trace, normalized with respect to the number of de-
cisions in the player’s decision trace N , i.e. Na/N . One
advantage of this metric is that it gives a numeric repre-
sentation of the degree to which an agent adequately rep-
resents a player across a level. The utilities of each agent
could subsequently be tweaked through iterations of training
using a simple hill-climbing approach to maximize the agree-
ment ratio with regard to an individual player or to clusters
of players. Another advantage is that the agreement ra-
tios would be easily intelligible to game designers using the
agent-personas in a content creation process. In order to
test the agent-personas as well as the comparison metrics, a
Random Controller was constructed which chose randomly
from all legal moves from each game state. This addition
investigates to which degree the agent-personas decided and
represented players differently from a random agent.

For each level in the user study, each playtrace was ex-
amined to determine which agent-persona had the highest
agreement, and hence represented the best fit for the play-
trace. Table 4 indicates the number of times each agent
was the best fit for each level. As is evident from the table,
most playtraces matched the Treasure Collector (T) per-
sona, while subgroups of players matched other personas.
This finding corroborates the observation in Section 4.1 of
players’ tendency to collect treasures, evidenced by the large
proportion of players that collected most (and some all) trea-
sures across levels. This behavior may have stemmed from



Table 4: Frequencies of agent-persona best fit across levels.

Agent
Level B R S M T Z Total

1 1 10 27 38
2 2 4 5 27 38
3 5 2 31 38
4 1 2 1 34 38
5 3 35 38
6 3 4 31 38
7 6 3 7 22 38
8 1 4 33 38
9 3 2 1 31 1 38
10 1 7 2 28 38

Total 15 29 7 29 299 1 380

Table 5: Statistics of the individual agent-personas. All
agent-personas attain high maximal values. This indicates
that all agents, except for the random controller, are relevant
approximations of some players.

Agent Mean SD Max Min N

Baseline Player (B) 0.52 0.10 0.94 0.25 15
Runner (R) 0.54 0.09 0.94 0.37 29
Survivalist (S) 0.53 0.11 0.94 0.25 7
Monster Killer (M) 0.54 0.10 0.80 0.23 29
Treasure Collector (T) 0.63 0.11 0.90 0.35 299
Random Controller (Z) 0.43 0.02 0.49 0.37 1

the treasure counter on the user interface as well as the
encouragement of being the “best” in the game. Unfortu-
nately, no post-play qualitative data were collected, which
could have helped illuminate individual motivations of play-
ers. Although the Treasure Collector persona does seem to
dominate the dataset in terms of agreements, all other agents
except for the Survivalist have a strong minority represen-
tation as best fits. The general relevance of the method is
supported by the fact that only a single playtrace was char-
acterized best by the Random Controller (Z).

In order to assess the performance of the best fitting agent-
personas for each playtrace, the agreements are visualized in
the plot depicted in Fig. 5. The plot shows how the agent
on average agreed with players on 60%–70% of their deci-
sions. A Mann-Whitney U test unsurprisingly indicated that
collectively, the best-fitting agent for each playtrace agreed
significantly more with players than the Random Controller
(W=155633.5, p<0.001).

Table 5 summarizes the performance of each agent across
all levels. The results show that all agents attain a high
level of agreement with some playtraces and very low levels
of agreement with others. This indicates a variety in the ex-
pressed utility functions of the agent-personas, but the fact
that the Treasures Collector agent dominates the data set in
terms of best fit suggests that this agent possibly could be
split into multiple agents to better represent the playtraces
for which it is the best fit.

6. DISCUSSION
The method developed and demonstrated in this paper

seems to have a number of attractive characteristics, allow-
ing for the construction of decision making personas and
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Figure 5: The best agreeing agent for each level. The dotted
line indicates the mean agreement of the best fitting agent-
personas across all players on each level.

determining to which degree different players agree to them.
However, this method also suffers from a number of limi-
tations warranting further work. These limitations concern
the data collection method, the agent as an abstract model
of human decision makers, and the scalability of the compu-
tational approach.

The applied data collection method sought to enable play-
ers to engage with the game in accordance with their indi-
vidual motivations and hence utilities. As part of this goal,
players were given the option of participating in a competi-
tion and lottery. The collected data exhibits a predominance
of behavior matching the Treasure Collector persona which
could be a consequence of players trying to win the compe-
tition.

The utility function of the agent-persona is constant over
the course of each level, and only one agent-persona is used
to characterize a full decision making trace. This means
that if the player changes her conception of utility while
playing the level, she will quite possibly match several per-
sonas during the playthrough. A response to this limitation
could be to subdivide decision traces, e.g. via a sliding win-
dow, to find the best agent-persona match for each point
along the decision making trace. As an extension, this ap-
proach could be used to cover all playtraces for an individ-
ual human player to investigate which personas are matched
across all the player’s traces. Relatedly, the utility function
of the agent will necessarily be a high-level abstraction of
the player’s. While this is intentional, other factors influ-



encing the agent’s evaluations and learning, such as explo-
ration chance, learning rate and γ value (discount of future
rewards) are kept constant in the experiment presented here.
Each of these could have, at some level, relevant psychologi-
cal counterparts such as openness to new experience, ability
at learning rules and content, and tendency and motivation
to plan ahead; the extend to which these parameters map to
human psychology should be explored, and agents with dif-
ferent configurations of these parameters should be tested.

The testbed game used for the development and demon-
stration of the method has a limited number of affordances
that are considered potential components of the player’s
utility function. Hence, the construction of various agent-
personas based on various configurations of these is a man-
ageable task, which can be done manually. For more com-
plex games, the number of affordances may be significantly
higher, making it difficult and time consuming to construct
agents that cover the space of possible utility configurations
to a degree that a good agent-persona match could be found
for every player. This affects the scalability of the method,
albeit the degree remains unknown at this point. One possi-
ble solution could be to use the method for modeling players
at a conceptual level and designing content at a sketch level,
rather than at a detailed level, though this will naturally de-
pend on the game in question. While the Q-learning agents
were demonstrated to work well, the training of the agents
is computationally demanding and hence time consuming.
The time needed to train the Q-learning agents on an aver-
age desktop computer would likely exceed the time a content
designer would be willing to wait for agent-based feedback.
A better approach would be to use a generic trained agent,
whose policy was not tied to a particular level. Possible
approaches could include using agents based on Q-learning
with neural networks, Monte Carlo Tree Search or evolu-
tionary rule-based systems.

Future work will focus on addressing these limitations,
in an attempt to find a faster performing, more accurately
representative, and scalable approach to modeling human
decision making in the form of generative agents. We will
also attempt to adapt the a priori constructed agents to fit
either individual players or, more realistically, generalized
representations of players. Such generalized representations
could be obtained by clustering players based on their dif-
ference from the various agent-personas, and training the
closest agent-persona to match the center of the cluster [5].

7. CONCLUSION
This paper presented a theory-based method of using gen-

erative agents as models of human decision making in com-
puter games and explored it in a simple scenario. A theoret-
ical argument for considering agents eligible for represent-
ing variations in human decision making processes as agent-
personas was presented. To test this argument, a crowd-
sourced human decision making experiment was conducted
using a testbed game. A number of Q-learning agents were
developed as agent-personas, and the decision making of hu-
man players was compared to the decision making of the
agents. The comparison demonstrated that the agents were
useful as personas for characterizing and discriminating be-
tween the human players. Although the suggested method
has a number of limitations in its current form, key findings
demonstrate that a high-level abstraction of human decision
making, in the form of agents, is possible and can provide

useful insights on possible and plausible interactions with
game levels, whether hand crafted or procedurally gener-
ated. We believe that the method could be of use to player
modeling as well as game design and development.
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