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ABSTRACT
Using artificial intelligence (AI) to automatically test a game re-
mains a critical challenge for the development of richer and more
complex game worlds and for the advancement of AI at large. One
of the most promising methods for achieving that long-standing
goal is the use of generative AI agents, namely procedural personas,
that attempt to imitate particular playing behaviors which are rep-
resented as rules, rewards, or human demonstrations. All research
efforts for building those generative agents, however, have focused
solely on playing behavior which is arguably a narrow perspective
of what a player actually does in a game. Motivated by this gap in
the existing state of the art, in this paper we extend the notion of
behavioral procedural personas to cater for player experience, thus
examining generative agents that can both behave and experience
their game as humans would. For that purpose, we employ the Go-
Explore reinforcement learning paradigm for training human-like
procedural personas, and we test our method on behavior and ex-
perience demonstrations of more than 100 players of a racing game.
Our findings suggest that the generated agents exhibit distinctive
play styles and experience responses of the human personas they
were designed to imitate. Importantly, it also appears that experi-
ence, which is tied to playing behavior, can be a highly informative
driver for better behavioral exploration.

CCS CONCEPTS
•Applied computing→Computer games; •Computingmethod-
ologies → Reinforcement learning.
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Figure 1: A generative car racing persona that imitates the
behavior and experience of a human player using the Go-
Blend method proposed in this paper. Behavior is depicted
as a trace of waypoints and experience is illustrated as color:
blue and red waypoints correspond, respectively, to low and
high emotional intensity (arousal) during the game.

1 INTRODUCTION
Players’ behavioral and emotional reactions to in-game stimuli of-
ten vary significantly between individuals. Professional players will
likely experience and react to in-game events far differently than
newcomers in most games, as the game becomes less challenging
and their play-style becomes more complex or creative. During
game production, game designers theorize about the intended play-
styles and design the game to align with these theoretical styles, in
a form of top-down persona design [6]. When the game is released,
one may observe the playtraces of different players and attempt to
cluster them as different behavioral play-styles. These styles might
match the intended ones; however, it is expected that entirely new
play-styles will emerge. These different styles are often referred to
as player personas [6].

Procedural personas are generative AI agents that are able to
match the behavior of player personas defined in a top-down fash-
ion (from designer intents) [24] or a bottom-up fashion (from player
data) [17, 18]. These agents, however, have so far been designed
based solely on behavioral aspects of playing a game (i.e. what
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a player does), thereby, ignoring largely the experience of play
(i.e. how a player feels) [46]. We argue that player experience
demonstrations—in addition to behavioral demonstrations—could
only enhance the expressive capacity and testing ability of gen-
erative personas. Such agents would be able to test game content
traditionally by behaving as humans would, but importantly also ex-
perience the game as human players would (i.e. in ways that human
experience demonstrations suggest).

Motivated by the lack of studies for generative personas that both
behave and experience their worlds, in this paperwe use Go-Explore
[13]—a recent cutting-edge reinforcement learning algorithm—to
build agents who imitate the behavior and experience of human
personas, and we test the algorithm on an arcade racing game.
The game is accompanied by a dataset [31] of over 100 human
playtraces, containing gameplay data and annotations of arousal
(i.e. emotional intensity) provided by the players themselves. We
first identify human personas through a data-driven approach, by
aggregating the human session data and performing agglomerative
hierarchical clustering. We then train agents to mimic the behavior
and experience of the identified personas of the game.

This work builds upon and extends significantly the work of Bar-
thet et al. [3] by using Go-Explore for imitating humans across both
behavior and experience, namely Go-Blend, in a more complex, fast-
paced, continuous-control game. The results from our case study
show that Go-Blend is capable of generating trajectories which
exhibit significantly different behaviors and experiences based on
the persona-specific reward function used during exploration. Sur-
prisingly, it seems that for some human player personas, experience
(as a reward function) can be the driver for agents that play the
game better, thereby, offering insights on the unknown relationship
between behavior and experience in play. By extending these tests
into stochastic settings, and by using more complex representa-
tions of player behavior, we argue that the proposed framework
can be a powerful tool for human-like automated play-testing and
experience-driven content generation [38, 45].

2 BACKGROUND
This section provides a brief overview of the use of Reinforcement
Learning in games with a focus on the Go-Explore algorithm (Sec-
tion 2.1), and reviews the various uses of player (and persona)
experience modeling in games (Section 2.2).

2.1 Reinforcement Learning and Go-Explore
Reinforcement learning (RL) is a popular family of machine learning
algorithms which lean on the perspective of behavioral psychology.
RL agents typically learn a policy through trial and error, receiving
positive or negative rewards for their actions [20]. RL has tradi-
tionally been used in games for optimal play (i.e. playing to win),
where the agent learns to play the game as efficiently as possible
[46]. Notable achievements in recent deep RL algorithms include
super human levels of performance in games such as Go [39], Atari
Games [32], Dota II [4], and Starcraft [40]. Beyond learning to play
games optimally, RL has also been used to imitate human behav-
ior [18, 37], for generating content [21, 38], and as the underlying
method for mixed-initiative design tools [10, 15]. Whilst the use
of human-annotated emotions as a training signal remains limited

[33], the use of simulated affect signals in training has been demon-
strated for social referencing in simple robotics tasks [16] as well
as to help accelerate training and avoid premature convergence [5].

RL algorithms usually struggle in hard-exploration tasks con-
taining sparse and deceptive rewards [2], and may suffer from
derailment and detachment during learning. Detachment occurs
when there are multiples areas of the search space to explore, re-
sulting in agents that forget how to reach previously explored areas.
Derailment occurs when distant states are very difficult to reach
during training due to a high probability of exploratory actions
preventing it from being reached. Algorithms such as Go-Explore
[13] and BeBold [47] are recent RL frameworks specifically designed
to tackle these issues.

In this paper, we focus on the exploration phase fromGo-Explore,
which builds an archive of promising game states by exploring the
environment and storing the states which have the best reward. At
its most basic form, exploration is done by randomly selecting a
state from the archive, returning to it by replaying its trajectory
and exploring a fixed number of random actions before selecting a
new state (see section 3.1). In Go-Explore, a trajectory refers to the
sequence of states and actions required to be taken by an agent to
reach a given state in a deterministic setting.

Go-Explore has been demonstrated to achieve previously un-
matched performance in challenging Atari games such as Pitfall and
Montezuma’s Revenge, which feature sparse deceptive rewards that,
in turn, result in premature convergence of deep RL algorithms.
The performance of Go-Explore has been demonstrated in text-
based games where it outperformed traditional agents in Zork I [1],
and has shown its ability to generalize to unseen text-based games
more effectively [28]. The algorithm’s capabilities have also been
demonstrated in complex maze navigation tasks which could not be
completed by traditional RL agents [29]. Beyond playing planning-
based games with exceptional performance, Go-Explore has also
been used for autonomous vehicle control for adaptive stress test-
ing [22], and as a mixed-initiative tool for quality-assurance testing
using automated exploration [7].

Barthet et al. [3] introduced Go-Blend, a proof-of-concept study
that used Go-Explore to model affect as an RL process. The out-
comes of that study were trajectories that were able to blend behav-
ioral rewards (i.e. trajectories that play optimally) with affective
rewards (i.e. trajectories that “feel” like a human would). In this
work, we build upon and extend significantly the Go-Blend frame-
work to a real-time and complex game that features a continuous
action space. Moreover, we attempt to generate trajectories that
both behave and experience a game as humans would, based on a
dataset of human demonstrations and annotations.

2.2 Personas and Player Experience
Human-computer interaction research has identified personas as a
grouping of individuals based on a set of descriptors [9]; this can
be done in the design phase by crafting a synthetic persona, or
as a categorization of a market segment of an already launched
product. A player persona is the extension of the persona notion
in the context of games and refers to categorization methods of
players based on their interaction with the game [6]. Traditionally,
personas can be created using one of two high-level approaches: a
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model-based (top-down) design or a model-free (bottom-up) design
[44, 46]. Holmgard et al. introduced the notion of procedural per-
sonas; generative AI agents that learn to play according to different
designer goals [18] or human playtraces [19]. Procedural personas
can be used for automated play testing with different play styles,
and for evaluating content through Experience-Driven Procedural
Content Generation (EDPCG) algorithms [45].

Modeling players’ experience in games is an active research
topic that is also tied heavily to automatic play testing [17, 18, 35]
and EDPCG [14, 24]. Early work in the field demonstrated how
machine learning models could be trained to predict player frus-
tration, challenge and fun, which can, in turn, be used as fitness
functions for generating levels in games such as Super Mario Bros
(Nintendo, 1985) [34]. Beyond its many applications of automatic
level generation, EDPCG has also been applied to mixed-initiative
level design [26, 43] and domains such as generative music [36] and
visuals [25]. Experience-Driven Procedural Content Generation via
Reinforcement Learning (EDRL) [38] further expands upon this
framework by fusing EDPCG [45] and procedural content genera-
tion via reinforcement learning [21]. In the initial EDRL study by
Shu et al. [38], agents were trained via RL to design personalized
levels for Super Mario Bros in an online fashion by maximizing a
quantified notion of “fun” as described by Koster [23].

In this paper, we focus on data-driven, bottom-up approaches
to procedural persona modeling, specifically through clustering of
human demonstrations of behavior [48]. We create trajectories that
both behave and “experience” like human players (personas), thus
generating trajectories with a diverse set of play-styles and affective
response patterns. Whilst we do not tackle any form of content
generation in this paper, our Go-Blend trajectories can be used to
train agents for automatic level testing and content evaluation.

3 GO-BLEND FOR PROCEDURAL PERSONAS
In this paper, we expand upon the Go-Blend framework [3] by
imitating different human personas across both behavioral and
experience dimensions in a challenging racing game. In this sec-
tion, we go through the basic steps of the Go-Blend algorithm
(Section 3.1), we outline the reward signals used (Section 3.2), and
the ways those rewards are integrated in the algorithm. Figure 2
illustrates the core aspects of the Go-Blend framework.

3.1 Algorithm
Go-Blend [3] is an implementation of the Go-Explore algorithm
that not only builds trajectories that behave in certain ways but also
optimizes aspects of their player experience. The implementation
of Go-Blend follows closely the original implementation of Go-
Explore proposed by Ecoffet et al. [13]. Due to the deterministic
nature of the test-bed game of this paper, we focus primarily on the
exploration phase of the algorithm. During exploration, the system
maintains an archive of cells, each containing a unique game state
that has been observed so far. Each cell also contains the trajectory
of actions required to return to its game state, behavior reward (e.g.
game score), and experience reward (e.g. annotated arousal). These
cells are selected using a desired cell selection strategy (e.g. random,
tournament selection, UCB), after which the system returns to the
chosen state and begins exploring from there. Exploratory actions

Figure 2: A high-level overview of Go-Blend for human im-
itation. The framework generates trajectories that imitate
human-like behavior and experience.

also follow their own action selection mechanism (e.g. random,
domain knowledge, policy-based) and are used to expand upon the
current cell’s trajectory.

After each exploratory action, a cell is constructed according to
the current game state. Each cell has an associated reward value (𝑅𝜆)
which is used to determine if the archive should be updated. Cells
are always added to the archive if they have not been encountered
so far. If the cell exists in the archive, it is updated only if it satisfies
one of two replacement criteria: a) any cell encountered with a
better 𝑅𝜆 than its existing counterpart in the archive is updated, b)
any cell with the same 𝑅𝜆 as the existing cell is updated if it has
a more efficient (shorter) trajectory. As Go-Blend considers both
play behavior and experience, 𝑅𝜆 is calculated using corresponding
reward functions 𝑅𝑏 and 𝑅𝑒 (see section 3.2) saved in each cell.
These values can be used for selection and replacement to prioritize
cells with the desired qualities.

The process of selecting cells, returning to their state and ex-
ploring new actions is repeated for a fixed number of iterations
or until a desired stopping criterion is reached (e.g. reaching the
optimal score). The result of this exploration phase is a number
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of high-performing cells for the given deterministic environment.
If required, these trajectories can be used to create a robustified
agent using imitation learning or RL algorithms such as the “Back-
wards Algorithm” [37]. This optional step creates an RL agent that
is capable of performing at the level achieved during exploration
in a stochastic environment. As mentioned, this step is not neces-
sary in the deterministic game test-bed of this paper, and is not
implemented.

3.2 Reward Functions
As mentioned before, we extend Go-Blend to not only reward imi-
tating human traces of experience (𝑅𝑒 ), but also imitating traces of
their behavior (𝑅𝑏 ). Therefore, both reward functions are calculated
using the same formula (see Equation 1), which we call 𝑅𝑥 . In short,
Eq. (1) calculates the average similarity between the data points in
the target (human) trajectory, and the data points in the Go-Blend
trajectory.

𝑅𝑥 =
1
𝑛

𝑛∑︁
𝑖=0

(1 − |ℎ𝑥 (𝑖) − 𝑡𝑥 (𝑖) |)2 (1)

where 𝑛 is the number of observations (time windows) made so
far in this trajectory; 𝑖 is the time window being evaluated; ℎ𝑒 (𝑖) is
the experience metric for time window 𝑖 and ℎ𝑏 (𝑖) is its behavior
metric; 𝑡𝑒 (𝑖) and 𝑡𝑏 (𝑖) is the target experience value and target be-
havior value respectively for time window 𝑖 . These target values are
derived from the human model, as the two rewards aim to minimize
discrepancy between the closest human behavior of experience per
time window that has occurred so far within the trajectory.

Our implementation combines the 𝑅𝑏 and 𝑅𝑒 components into
a single, weighted reward function as seen in Go-Blend [3]. Both
reward components are normalized within the range [0, 1] to avoid
uneven weighting between the two objectives. The reward function,
denoted by 𝑅𝜆 , is formally defined as follows:

𝑅𝜆 = 𝜆 · 𝑅𝑒 + (1 − 𝜆) · 𝑅𝑏 (2)

where 𝜆 is the weight parameter that blends the two components;
𝑅𝑒 and 𝑅𝑏 correspond to the experience and behavior reward, re-
spectively. By increasing 𝜆, we instruct Go-Blend to increasingly
prioritize imitating player experience, and vice versa. At 𝜆 = 0,
the trajectories are rewarded solely on imitating human behavior,
whilst at 𝜆 = 1 they are rewarded on just their experience imitation.

Both 𝑅𝑏 and 𝑅𝑒 therefore assume time-continuous signals for
either behavior or experience respectively. The AI agent produces
a time-continuous signal, which should match human-provided
time-continuous signals (e.g. from a single human player that the
agent imitates, or aggregated from many players). The distance is
squared to penalize larger deviations from the target signal even
more during exploration, whilst making it easier to visually dis-
tinguish between good and bad performing trajectories during
evaluation. Since both 𝑅𝑒 and 𝑅𝑏 calculate the average distance
across all the observations made so far, it encourages trajectories
with high imitation accuracy across the entire duration of the game.

As mentioned, 𝑅𝑒 is the reward for imitating human experience.
This function can be used for imitating any form of measure for
experience, such as frustration, arousal, and fun, given the appropri-
ate model for mapping game states to player experience (see Figure

Figure 3: First-person view in the Solid Rally racing game.

2). Similarly, as 𝑅𝑏 is the reward for imitating human behavior, any
measure for behavior can be used such as player inputs, score traces,
and game mechanics’ frequencies. For more complex behavior or
experience imitation, ℎ𝑥 (𝑖) and 𝑡𝑥 (𝑖) can be seen as a vector for
all the metrics that should be imitated, in which case equation (1)
calculates the vector distance.

4 TEST-BED RACING GAME: SOLID RALLY
We test our proposed system for imitating behavior and emotion of
player clusters in the “Solid Rally” driving game (hereafter Solid).
Solid is a racing game built using the Unity Engine and forms
part of the nine games featured in the AGAIN dataset [31]. This
game was chosen for its non-trivial mechanics and objective (beat
the opponent cars within the time limit), as well as its associated
dataset of 108 human demonstrations with annotated arousal traces.
In this section, we describe the properties of the game and its
human playtraces, how the game-states are represented for Go-
Blend along with the rewards used, and finally how we split the
human playtraces into player personas in order to derive persona-
specific rewards for the Go-Blend algorithm.

4.1 Game Description
In Solid, the player controls a rally car from a first-person perspec-
tive (as shown in Figure 3) and attempt to end the race ahead of
the three opponent cars. The race ends when the player has com-
pleted three laps or has driven for two minutes, after which they
are given a placement and their points tally into a final score. Points
are awarded for successfully driving around the circuit and passing
through checkpoints. There are 8 checkpoints per lap which results
to a maximum score of 24 points awarded for completing the full
three laps within the time limit. The player controls the car’s gas
pedal and steering wheel through the arrow keys. There are three
possible inputs for steering (-1, 0, 1) and gas (-1, 0, 1), where 0 is the
neutral state when no key is pressed. The car’s handling loosely
simulates a rally car, meaning the player must balance the gas and
steering input to drift the car past corners. The track contains “off-
track” grass segments which slow the cars down slightly if driven
over, providing a viable strategy to cut corners in the circuit. The AI
opponent cars use a simple deterministic controller which follows
a set of waypoints to drive around the circuit.

This game is accompanied by a dataset of 108 human play ses-
sions (excluding outliers) with player annotated arousal traces,
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called the AGAIN dataset [31]. Each entry in the dataset contains
the average data for the previous 250 milliseconds across 32 in-
game features specific to Solid. These features cover basic spatial
properties such as rotation, speed, and collision status for both the
player and opponent cars, as well as their current position, score,
steering and pedal input. Arousal traces were collected in a contin-
uous, unbounded fashion using RankTrace [27] and the PAGAN
[30] online annotation framework. These arousal traces were then
normalized on a per-session basis to account for discrepancies in
the value ranges between players.

Note that while the playtraces and arousal annotations in AGAIN
cover games that may last three laps or up to 2 minutes, in reality
many of the players did not complete all three laps within the time
limit. For Go-Blend we therefore use the behavior and experience
data of the first two laps, and test the performance of the AI personas
on races that last only two laps in this paper.

4.2 Go-Blend for Solid Rally
To use Go-Blend, the game must be represented in a way that can be
mapped to a cell in the archive of game states. The in-game features,
provided by AGAIN, however, lack the granularity to adequately
distinguish between meaningfully different game states. Therefore,
a new state representation was defined using categorical variables.
The player car’s speed is distinguished between two states (slow,
fast) and its rotation between six 30-degree thresholds. The circuit
is split into 19 segments according to their high-level structure (e.g.
straight, half-curve, full-curve) which are further split into sub-
segments according to their shape (e.g. left side and right side, off-
road) to identify the player’s location on the track. Finally, cells are
also distinguished by the player’s lap number and their proximity
to opponent cars (i.e. proximity is true if an opponent car is on
the same sub-segment). This results in 4, 800 possible cells in the
archive for a race distance of two laps.

Due to the game’s reliance on the physics system of Unity, some
changes had to be made to the settings of the game engine and
car controller scripts to maximize the determinism of the environ-
ment. The game was set to a “forced” frame-rate mode to ensure
the same number of frames occur between each event. The game
engine was set to “enhanced determinism” mode with the physics
precision increased. These changes were important to ensure that
the trajectories found through Go-Explore’s exploration phase were
replayable without any significant deviation from the results seen
during exploration. We use the player’s score as our measure of
in-game behavior where the goal is to reach as many checkpoints
as possible. Specifically, we compute ℎ𝑥 (𝑖) in equation (1) as the
number of checkpoints crossed so far in the current trajectory until
time window 𝑖 , divided by the maximum possible score for two laps
(16 points) in order to derive a value normalized within [0, 1].

As mentioned, we use the annotated arousal traces provided
with the human demonstrations for Solid as our measure of player
experience. Our approach for calculating the current arousal value
for the player, i.e. ℎ𝑥 (𝑖) in equation (1), is similar to that used
by Barthet et al. [3]. The AGAIN dataset [31] provides human
experience demonstrations in the form of moment-to-moment (i.e.
4Hz) players’ annotated arousal values which are linked to a vector
of 32 in-game features. We directly use these arousal labels to

Figure 4: Clustering of aggregated session data using theward
dendogram method and a T-value of 5.5 (red horizontal line)
revealing 4 clusters.

build our arousal reward functions rather than relying on a trained
surrogate model of arousal to predict outcomes indirectly.

After each exploratory action taken the algorithm queries the
Solid dataset for the arousal values of the K-nearest neighbors. The
current arousal at this time window 𝑖 , i.e. ℎ𝑒 (𝑖) in equation (1), is
taken as the mean of these arousal values, which is calculated using
distance-weighted kNN [12]. The 𝑘 nearest neighbors are found by
calculating the Euclidean distance from the current feature vector to
every entry in the dataset of Solid playtraces. To find the weighted
average, each arousal value is weighted by their corresponding
distance to give more weight to the arousal values of the closest
neighbors. These weighted values are added together and divided
by the sum of the neighbor distances to obtain a value normalized
within [0, 1].

In short, this method of calculating the arousal reward for Go-
Blend reduces the noise caused by outliers in the AGAIN playtraces,
and biases arousal similarity towards those playtraces that are most
similar to the agent’s game-state during each time-window. Note
that the target arousal and behavior per time window (𝑡𝑒 (𝑖) and
𝑡𝑏 (𝑖) respectively) are calculated based on the personas discovered
from the AGAIN playtraces as described in section 4.3.

4.3 Player Personas in Solid Rally
In this section, we describe our data-driven approach to identifying
player personas from Solid’s dataset of 108 human play sessions.
Since each play session is made up of a maximum of 480 (250ms)
time windows, they need to be aggregated into a single vector
that represents the entire session. First, all the play sessions in the
dataset were truncated to only include the data for two laps to line
up with our experimental protocol. The aggregation methods we
used for each feature in the dataset varied based on their type. In the
case of the player’s score, we take the maximum score achieved in
the session, which always corresponds to the score observed in the
final time window. Scalar variables such as player speed, distance
and rotation changes were represented by their mean. Categorical
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Figure 5: Mean in-game score and arousal traces over time for
the four identified player personas. Note that a shorter score
trace indicates that the race distance has been completed
before the time limit by the entire cluster.

variables such as the off-road and collision flags were converted into
integer numbers representing the frequency of their occurrence.

Figure 4 depicts the resulting dendogram when clustering the
aggregated AGAIN dataset of 108 playtraces (i.e. behaviors) us-
ing Ward’s hierarchical clustering method [41] and the squared
Euclidean distance as a measure of dissimilarity between feature
vectors [11]; the obtained dendogram shows four distinct behavioral
clusters. Based on the four different clusters of players identified,
we aim to identify the differences between clusters and provide
them with some human-readable labels. Such labels are helpful
when defining play personas from data [6]. Figure 5 shows the
average performance (game score) per cluster across a two-lap race
in Solid. Based on their performance, we labeled the four clusters
as “expert” (27 players), “advanced” (32 players), “intermediate” (19
players), and “beginner” (30 players). All player clusters except for

the “beginner” succeed in completing two laps before the time limit,
but some members of the “beginner” cluster do not finish the race
on time (i.e. the average score is below the maximum of 16). Beyond
the scores across the four clusters, Figure 5 also displays the corre-
sponding mean arousal traces for each cluster. This figure indicates
that there is no apparent linear correlation between Solid’s feature
set and the arousal values generated. In all experiments reported
in this paper, the mean score trace and mean arousal trace of each
persona (i.e. cluster of players) are used as target values (𝑡𝑒 (𝑖) and
𝑡𝑏 (𝑖)) for behavior and arousal persona imitation, respectively.

5 EXPERIMENTS
In this paper, we introduce the notion of a Go-Blend RL algorithm
that is guided by a player persona rather than the entire player
population. We expect that a player persona can provide a more
coherent playtrace for behavioral imitation, and that similarly the
experience of the persona’s cluster will also be idiosyncratic to the
experience of the players within the same (behavioral) cluster. Our
core dimension of inquiry is whether Go-Blend agents that aim
to match either the behavior or the experience or a combination
thereof will differ depending on which persona they are imitating.
A complementary inquiry is whether some personas are better at
providing guidance in terms of in-game performance, since in Fig. 5
we established that the “expert” persona cluster has better in-game
scores than others. In our experiments, we varied 𝜆 in Eq. (2) within
[0, 0.5, 1] to test behavior imitation, blended behavior and arousal
imitation, and arousal imitation respectively.

We conducted three independent runs of each experiment for
500, 000 iterations, saving the best cell at the end. During an it-
eration of exploration, 20 exploratory actions are taken before
randomly selecting a new cell to load and explore from. Actions
are selected every 250ms using a weighted random selection from
the possible inputs for steering (-1, 0, 1) and gas (-1, 0, 1), where
the weights are the normalized frequency of the inputs in all 108
human demonstrations in AGAIN.

For the experience reward 𝑅𝑒 , we derive the arousal trace of
the Go-Blend agent so far through the kNN method described in
Section 4.2, considering the 𝑘 = 5 nearest neighbors from the play
sessions belonging to that persona only (i.e. ignoring game states
belonging to other personas). For the behavior reward 𝑅𝑏 we derive
the game score trace normalized to the max score of the trajectory
so far, and reward the agent according to how closely it matches
with the mean game score of the relevant persona cluster (Figure 5).

Beyond comparing between Go-Blend variants trained on differ-
ent personas and the personas themselves, we also compare against
two baseline agents: a random agent that chooses a gas/steering
action via weighted randomness based on the frequency of all hu-
man demonstrations (similar to the exploration of Go-Blend) and
a winner agent that uses Go-Explore to maximize its score within
the 2-minute time limit.

5.1 In-Game Performance Metrics
Table 1 shows a set of performance metrics for all twelve experi-
ments as they are compared to their respective personas (clusters
of human behaviors), and the two AI baselines. The performance
metrics include the final score achieved, the agent’s average speed
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Table 1: Results for every experiment in Solid Rally, grouped by the persona being imitated by each experiment and averaged
across 3 runs, including the 95% confidence interval. Cells colored in gray represent the statistics of the human personas. Bold
cells point to in-game statistic values of Go-Blend that are closer to those of the corresponding human persona.

Experiment In-Game Statistics
Setup Final Score Lap 1 Time (s) Average Speed Nearest Car Off-Road (%) Midair (%) Crashing (%)
Random 0 ±0.00 N/A 0.98 ±0.01 379.93 ±19.75 97.78 ±1.06 0.21 ±0.0 13.61 ±1.66
Winner 16 ±0.00 58.67 ±5.73 33.1 ±1.44 409.15 ±44.76 9.92 ±3.33 0.15 ±0.12 15.48 ±2.27
Beginner 14.00±0.94 70.51 ±6.76 33.8 ±2.16 419.61 ±2.83 24.88 ±2.92 4.8 ±2.02 4.79 ±0.7

𝑅0.0 13.33 ±0.53 76.0 ±16.0 32.01 ±0.95 295.78 ±91.59 5.94 ±1.03 2.95 ±1.03 14.76 ±2.38
𝑅0.5 14.33 ±0.53 64.67 ±1.04 29.07 ±0.86 342.4 ±9.49 5.92 ±2.17 4.31 ±0.12 17.34 ±3.59
𝑅1.0 4.33 ±0.53 N/A 24.6 ±4.37 310.88 ±85.79 10.57 ±11.9 3.35 ±0.79 21.51 ±8.88

Intermediate 16.00 ±0.13 53.04 ±2.86 39.62 ±0.88 291.91 ±4.8 21.81 ±2.77 3.7 ±1.28 5.88 ±0.98
𝑅0.0 14.00 ±0.00 51.75 ±2.23 31.3 ±0.29 329.15 ±57.3 4.52 ±2.24 4.53 ±1.09 14.97 ±2.41
𝑅0.5 14.67 ±0.53 55.75 ±2.05 32.34 ±0.56 416.48 ±14.02 6.85 ±0.89 3.28 ±0.57 14.69 ±2.12
𝑅1.0 2.67 ±4.27 98.92 ±11.92 19.36 ±3.92 376.38 ±29.73 26.41 ±7.89 3.2 ±1.75 20.31 ±3.1

Advanced 16.00 ±0.10 47.12 ±0.94 43.63 ±0.55 146.64 ±3.35 13.41 ±1.57 2.57 ±0.84 7.07 ±0.75
𝑅0.0 13.67 ±1.92 47.42 ±1.49 33.06 ±3.41 328.7 ±10.33 4.1 ±0.66 4.95 ±1.65 15.87 ±7.61
𝑅0.5 13.67 ±0.53 51.42 ±1.79 31.48 ±0.77 322.95 ±66.02 6.17 ±3.13 5.34 ±1.26 15.65 ±2.38
𝑅1.0 7.00 ±6.06 93.17 ±31.54 22.46 ±5.64 389.7 ±13.24 10.19 ±10.42 7.09 ±3.38 19.92 ±3.4

Expert 16.00 ±0.10 42.01 ±0.84 48.25 ±0.67 306.66 ±4.6 11.06 ±1.7 1.52 ±0.24 5.83 ±0.57
𝑅0.0 15.00 ±0.00 44.42 ±0.67 42.17 ±0.66 41.98 ±19.26 2.61 ±1.12 3.31 ±0.26 13.07 ±1.06
𝑅0.5 14.33 ±0.53 44.67 ±0.58 38.98 ±2.65 97.19 ±53.13 4.82 ±3.46 4.84 ±1.59 16.21 ±1.55
𝑅1.0 11.00 ±2.44 48.08 ±2.79 33.33 ±0.25 234.25 ±58.41 13.88 ±6.61 2.93 ±1.06 15.86 ±0.45

during the race, and the time taken to complete the first lap. We also
include the agent car’s distance to the nearest visible opponent on
the track at any given time; if no opponents are visible, this value
is set to the maximum possible distance of 500 units. Finally, we
include the percentage of time windows spent off-road (i.e. grass
segments), midair, and crashing with another opponent or a barrier.

Looking at the table it is immediately apparent that the trajecto-
ries generated by Go-Blend differ significantly in behavior based on
the persona being imitated. Our 𝑅0.0 and 𝑅0.5 experiments produce
very similar lap times and average speed around the circuit to their
target personas, indicating they are able to scale up and down in
performance depending on their target score trace. The main reason
for this is the high correlation between these two performance mea-
sures and the players’ score (e.g: higher score traces need shorter
lap times and faster speeds). There is also some variation in play
style between the experiments as the higher performing personas
pressure Go-Blend to create more efficient paths around the circuit,
evident in the decreasing time spent off-road and midair as the
performance standard increases.

Looking at the final scores we can observe the “winner” agent
is the only experiment which perfectly matches the “intermedi-
ate”, “advanced” and “expert” personas. The Go-Blend experiments
for these personas struggle to finish the second lap and converge
prematurely to marginally inferior final scores. As expected the ran-
dom agent is not capable of driving a representative path around the
circuit, failing to reach even the first checkpoint. By looking at the
Lap 1 time of the “winner” agent, we can see that it achieves this fi-
nal score at a significantly slower pace than the 𝑅0.0 and 𝑅0.5 agents
for “advanced” and “expert” players. This indicates that whilst the
“winner” agent can very easily explore the track and complete the

two laps within the set time limit of two minutes, it is unable to
improve on the efficiency of the trajectories past that point. This
also sheds light on the lower final scores during imitation, as once
a high performing, full-length trajectory is produced, the algorithm
struggles to improve upon it further. This limitation is likely caused
by the sparsity of the score signal (just 16 points), which leaves the
algorithm directionless in-between checkpoints. Another reason is
our relatively simple cell selection and replacement strategy which
does not prioritize efficiency in a sufficient manner, and needs to
be explored further in future studies.

The table also shows that 𝑅1.0 experiments, unsurprisingly, fail
to imitate their persona across all in-game statistics. The 𝑅1.0 ex-
periment imitating the “expert” persona, however, achieves sur-
prisingly strong results across all our measures despite the fact
it does not prioritize behavior imitation during exploration. One
reason for this is that the expert human persona completes the race
significantly quicker than the other personas, thus pressuring the
Go-Blend experiments to produce more efficient trajectories during
exploration to cater for the shorter time limit. This pressure for
more time-efficient trajectories seems to prevent Go-Blend from
getting stuck during exploration, allowing it to explore more high-
performing states in Lap 2. This is backed up by the fact that both
the “beginner” and “intermediate” 𝑅1.0 experiments converge to
under 60% exploration of possible states, whereas their “advanced”
and “expert” counterparts both reach 80% of possible states. Fur-
thermore, looking at the percentage of states explored in Lap 2, the
“beginner” and “intermediate” 𝑅1.0 experiments both fail to perform
any significant exploration, exploring 0% and 40% of possible Lap 2
states, respectively.
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Figure 6: Reward comparison for imitating persona behavior
(𝑅𝑏 ) and experience (𝑅𝑒 ) in Solid, using the best trajectory
found in each experiment, averaged across three runs, and
including the 95% confidence interval.

5.2 Reward Comparison
Beyond the in-game performance of the agents, in this set of exper-
iments we focus on how well our agents match the persona they
attempt to imitate in terms of rewards. To assess this, we use the 𝑅𝑏
and 𝑅𝑒 rewards and evaluate them over the entire trajectory (at the
end of the two laps or after the time limit of 2 minutes is elapsed).
The reward values of the respective persona each Go-Blend variant
aims to emulate are illustrated in Figure 6, along the reward values
of our baseline random agent. We observe that, unsurprisingly, the
random agent (even when biased according to the frequency of
human actions) does not match the behavior of any persona due
to their poor behavior. As corroborated by Table 1, both 𝑅0.0 and
𝑅0.5 agents match the performance of the persona they aim to imi-
tate, but the 𝑅1.0 agents who are trained to imitate only arousal of
that persona, unsurprisingly, cannot match its performance. When
imitating solely arousal for the “expert” persona (i.e. the most profi-
cient players), however, the agent’s behavior is surprisingly similar
to that of the “expert” persona, as seen in the previous section.

In terms of arousal imitation, it is surprising that even the ran-
dom agent can reach high 𝑅𝑒 values across all personas. The most

apparent reason for this is that the mean arousal traces for all four
personas are relatively stable and hover around the median (0.5)
across the duration of the race. Importantly, the random agent em-
ploys the same arousal model (i.e. using distance-weighted kNN)
as the Go-Blend agents, and thus it seems it is capable of produc-
ing a somewhat decent experience trace compared to the target
persona, even if it fails to yield a representative behavior. The 𝑅0.0
agents, however, manage to better match their respective persona’s
arousal trace compared to the random agent even though they do
not consider arousal as a reward. Interestingly, the 𝑅1.0 experiments
imitating the “beginner" persona produce a much larger discrep-
ancy in arousal (i.e. lower 𝑅𝑒 ) compared to the same experiment for
other personas. This is because of this agent’s inability to explore
past Lap 1 and thereby converging prematurely to a short trajectory
which does not even reach the time limit. This results in a poor
average score that is significantly worse than any other experiment,
including the random agent baseline.

Finally, we observe that arousal imitation is more successful for
the most proficient players. Specifically, the 𝑅1.0 agents trained on
the “expert” persona, this high match in arousal is accompanied
by a fairly close match in terms of performance. The 𝑅1.0 experi-
ments trained on the “advanced” persona also achieve good arousal
imitation, but are more inconsistent on their behavior imitation
task compared to the “expert” imitator. This is also likely due to
the shorter traces for “advanced” personas and even shorter for
“expert” personas (see Fig. 5).

6 DISCUSSION
In this paper, we expanded on the Go-Blend framework to generate
RL agents that imitate the behavior and experience of human per-
sonas in the real-time racing game Solid Rally. This constitutes our
initial study on blending notions of behavioral and experience per-
sona modeling using RL. Our approach for identifying personas of
human players in a bottom-up fashion through the AGAIN dataset
yielded 4 distinct groups of players in terms of their behavior, the
majority of which Go-Blend was capable of imitating accurately.
The high imitation accuracy of Go-Blend agents for both behav-
ior and experience of human personas highlights the potential of
Go-Blend for automated play testing and EDPCG, and opens up
a number of interesting avenues for future work. In this section
we discuss the limitations of our approach and outline the steps to
further improve on the efficiency, robustness and scalability of the
method.

Our simple reward function for imitating behavior using the
personas’ mean score produces trajectories which imitate their
level of performance, but not necessarily their actual behavior on
track. This is evident in the bigger discrepancy between our gen-
erated trajectories and the personas in off-road time, distance to
the nearest opponent and time spent crashing into other objects.
The in-game behaviors which are easiest to imitate are the ones
that correlate with score such as the average speed. A more com-
plex reward function for behavior imitation, which incorporates
more dimensions than just score could provide more representative
behavior for the given persona. One alternative representation of
behavior could be imitating the entire feature trace (32 elements)
of human players which should provide a richer representation of
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their behavior on-track. When it comes to experience imitation,
adding further affect dimensions to the existing model such as va-
lence and dominance would create agents with richer and wider
affect responses to in-game stimuli. Moreover, extending our reward
functions to consider the uncertainty of the values generated from
our human demonstrations could help the agents identify more
promising states with lower disagreement between playtraces and
experience annotations.

Our current approach does not consider reward as part of the
cell selection strategy for exploration in Go-Explore. In our im-
plementation, we only use the cell reward for replacement in the
archive. Selecting cells according to their 𝑅𝑒 (e.g. tournament selec-
tion, UCB) and leaving cell replacement to their 𝑅𝑏 or raw in-game
score could be a more efficient alternative to the blended reward
function used in this paper. This direction would also allow for a
more in-depth evaluation of how player experience drives action
selection during gameplay, and could possibly lead to more efficient
and robust training, or even discover novel behaviors.

Go-Blend is currently reliant on a dataset of human playtraces
for the environment being used, which is not readily available for
most games and is challenging to produce. Reducing the reliance on
such data, either partially or completely, through transfer learning
or general models of player experience is an important avenue for
future work. Furthermore, we currently identify player personas
through the game features collected in the AGAIN dataset using
simple aggregation methods. A more complex approach could lever-
age sequential clustering on the playtrace as a whole, or look at
alternative representations for clustering such as raw game footage.

Whilst the focus of our experiments was to imitate absolute
values for behavior and experience, another promising direction
would be to predict changes from one time window to the next (e.g.
increase in score/arousal) via preference learning [42]. We would
also like to extend this framework to tackle more challenging and
stochastic testbeds which are more representative of real-world
applications. One approach would be to make use of Go-Explore’s
robustification phase to train agents capable of performing in sto-
chastic scenarios. In situations where a deterministic setting is not
possible for the exploration phase, policy-based Go-Explore could
be used to explore the state space and learn a robust policy. Finally,
we would also like to investigate the use of more novel methods
for generating agent trajectories, such as training a decision trans-
former [8] to efficiently generate human-like trajectories for both
behavior and experience.

7 CONCLUSIONS
This paper introduced the notion of generative AI agents (proce-
dural personas) that both play and experience their game as human
players do. Our Go-Blend framework leverages Go-Explore’s profi-
ciency in hard exploration tasks to reward trajectories for imitating
human behavior, imitating human experience, and blending the two.
Using the human demonstration data of the AGAIN [31] dataset,
we identify four distinct player personas across 108 players through
hierarchical clustering and generate trajectories which imitate their
mean score and arousal traces throughout a race. Our results show
that Go-Blend is able to identify trajectories which can accurately
imitate both behavior and experience simultaneously, as well as

exhibit good behavioral patterns even when Go-Blend considers
arousal (experience) imitation only. The outcome of this work is a
set of trajectories, each expressing distinct play-style and experi-
ence patterns that can empower human-like automated play-testing
and experience-driven procedural content generation [45].
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