LLMaker: A Game Level Design Interface Using
(Only) Natural Language

Roberto Gallotta
Institute of Digital Games
University of Malta
Msida, Malta
roberto.gallotta@um.edu.mt

Abstract—In this demo paper we present LLMaker, a video-
game level design tool that operates solely via natural language
instructions. Unlike existing level design tools, LLMaker allows
the designer to express their intent in an intuitive way, interacting
with a cognitively undemanding interface, while still ensuring
the generated levels adhere to specific domain and playability
constraints.

Index Terms—creativity support tools, design assistant, mixed-
initiative tools, large language models

I. INTRODUCTION

Design tools [1f], ranging from simple CAD programs to
video-game editors such as Super Mario Maker, are powerful
programs that let users express their creativity by interacting
via their interfaces. However, designing an interface that is
intuitive and does not stifle user creativity is a challenge
in itself. Most of these tools rely on sliders, buttons, and
adjustable knobs as a simple solution to this problem. Ex-
plaining an idea or a requirement in natural language is
instead more intuitive, lowering the level of expertise required
to interact with these tools. With the recent surge of large
language models (LLMs) in almost all aspects of everyday
life, it is not difficult to imagine a future where tools integrate
LLMs as a faster medium to communicate user intentions to
the program [2]]. To showcase the power of this approach,
we introduce LLMaker, a video-game level design tool that
leverages both LLMs and foundation models (FDs) to generate
levels for a dungeon crawler game, complete with ad-hoc
graphical assets. Games provide an ideal domain for this
kind of applications, as they exhibit both constraints and
a highly creative design process. In this demo, we aim to
explore how a natural language-only application is compared
to traditional tools, and whether LLMaker provides the basis
for a more unconstrained creative process. During the demo
session, we will let attendees create levels alongside our advice
and support. This will also highlight issues with usability in
unconstrained settings, with creatives that may wish to explore
more exotic themes than the ones in our internal tests.

This project has received funding from the European Union’s Horizon 2020
programme under grant agreement No 951911.

979-8-3503-5067-8/24/$31.00 ©2024 European Union

Antonios Liapis
Institute of Digital Games
University of Malta
Msida, Malta
antonios.liapis @um.edu.mt

Georgios Yannakakis
Institute of Digital Games
University of Malta
Msida, Malta
georgios.yannakakis @um.edu.mt

II. THE LLMAKER TOOL

LLMaker allows the user to design a level for a hypothetical
dungeon crawler video-game, in the vein of Darkest Dungeo
Generation is driven exclusively via natural language instruc-
tions. A LLM interprets the request and, via function calling
[3]], generates as response the function name and parameters
that will be executed on our back-end system. Parameters for
the function are filled out either via extrapolation from the user
request, or are generated by the LLM directly. For example,
the user can specify the “name” of an enemy to create, and
the LLM will use it in the function call, while generating the
enemy’s “description” accordingly. As we leverage a back-end
system, we can enforce constraints that the LLM is forced to
adhere to. These constraints also impact the the value range of
generated parameters and, for textual parameters, we condition
their values by means of prompting. The back-end functions,
which the LLM can call, affect the level by: (1) adding,
removing, or modifying a room; (2) adding or removing a
corridor; and (3) adding, removing or altering an enemy, a
trap, or a treasure chest. Once the function is executed, the
LLM provides a short summary of the changes to the user.
In case a function fails to execute, a functional error [4] is
returned to the LLM, which can decide whether to try calling
the function again with different parameters, or simply inform
the user of the problem.

While the level is described in its entirety in a structured
text format (JSON), we also generate assets (backdrops for the
room or corridor, and sprites for enemies, traps, and treasure
chests) using Stable Diffusion models [5]. We employ a fine-
tuned model, A-Zovya RPG [6], to generate images from the
descriptions provided by the LLM.

We can identify three main components the user can interact
with in the main LLMaker interface, as shown in Figure E} On
the right side of the interface, we can find the “Chat Area”.
This is where the user can ask questions about the current
level, or request changes (as mentioned above). To the right
of the interface, the current room or corridor is displayed as its
image background along with any enemies, traps, and treasure
chests. Hovering over any of these entities will make a tool-
tip appear, summarising the properties of the entity. Finally,

IRed Hook Studios, 2016

@j} LLMaker Demo

r Lava Pit

¢l

" Werecat

Py -3

#
"\ ‘ ‘I s Y Amanly man turned into a giant depressed cat.
e { m st
. 1

j

i dk

Fig. 1. A screenshot of our chat-based level design interface, LLMaker. On the upper left pane, the preview of the currently selected room. On the lower left
pane, the generated level layout, with rooms (larger squares) and corridors (smaller squares). On the right pane, the chat area with the conversation between

designer and LLM.

a mini-map at the bottom of the interface shows rooms and
corridors on a tile-based grid. Users can move from one room
or corridor to another simply by clicking on the mini-map.
The entire application is built with Python using PyQt for
the user interface. LLMaker is powered by GPT-3.5-Turbo-
1106, a proprietary LLM provided by OpenAl. LLMaker
interacts with the model via API calls using Python. The func-
tions in our back-end system allow for creation, removal, or
editing of rooms, corridors, enemies, treasures, and traps. The
description of these methods, necessary for function calling,
is included in each API call following YAML formatting, as
recommended in the OpenAl API developer guidelines.

III. DISCUSSION AND CONCLUSION

LILMaker currently generates content as both text (the level
descriptors) and images (the level background and entity
sprites). We intend to broaden the capabilities of the appli-
cation by generating ancillary resources such as background
music, synthesised taunts, and a voiced narrator.

Future research will focus on the integration of a mission
objective for the work-in-progress level, with checks for
completion, as well as a simulation-based evaluation of level
difficulty and player engagement.

Finally, while the current language model follows the typical
“Al Assistant” paradigm, which falls under the “support” role
[7], it would be interesting to change the behaviour of the

language model from assistant to something more proactive,
following the recently introduced user-centered framework for
human-Al co-creativity [].

REFERENCES

[1] S. Deterding, J. Hook, R. Fiebrink, M. Gillies, J. Gow, M. Akten,
G. Smith, A. Liapis, and K. Compton, “Mixed-initiative creative inter-
faces,” in Proceedings of the CHI Conference Extended Abstracts on
Human Factors in Computing Systems, 2017.

R. Gallotta, G. Todd, M. Zammit, S. Earle, A. Liapis, J. Togelius, and

G. N. Yannakakis, “Large language models and games: A survey and

roadmap,” arXiv preprint arXiv:2402.18659, 2024.

OpenAl, “Function calling.” https://platform.openai.com/docs/guides/

function-calling, 2023. Accessed 27 Feb 2024.

[4] E. Buoannno, “Functional error handling,” in Functional Programming

in C#, ch. 6, Manning Publications Co., 2017.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-

resolution image synthesis with latent diffusion models,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, 2022.

[6] Zovya, “A-Zovya RPG Artist Tools.” |https://civitai.com/models/8124/
a-zovya-rpg-artist-tools, 2023. Accessed 16 April 2024.

[71 M. L. Maher, “Computational and collective creativity: Who’s being
creative?,” in Proceedings of the International Conference on Innovative
Computing and Cloud Computing, 2012.

[8] C. Moruzzi and S. Margarido, “A user-centered framework for human-ai
co-creativity,” in Proceedings of the Conference on Human Factors in
Computing Systems, 2024.

[2

—

3

—

[5

—_

https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://civitai.com/models/8124/a-zovya-rpg-artist-tools
https://civitai.com/models/8124/a-zovya-rpg-artist-tools

	Introduction
	The LLMaker tool
	Discussion and Conclusion
	References

