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Abstract
This paper presents a search-based approach to generat-
ing game content that satisfies both gameplay requirements
and user-expressed aesthetic criteria. Using evolution-
ary constraint satisfaction, we search for spaceships (for a
space combat game) represented as compositional pattern-
producing networks. While the gameplay requirements are
satisfied by ad-hoc defined constraints, the aesthetic evalua-
tion function can also be informed by human aesthetic judge-
ment. This is achieved using indirect interactive evolution,
where an evaluation function re-weights an array of aesthetic
criteria based on the choices of a human player. Early results
show that we can create aesthetically diverse and interesting
spaceships while retaining in-game functionality.

The games industry has often used procedurally generated
content in order to increase replayability and cut down on
development costs. With the gaming population increasing
in size and diversity over recent years (Entertainment Soft-
ware Association 2011), the need for original content suited
to a wider assortment of players of different age, culture
and taste has also increased. Experience-Driven Procedural
Content Generation (Yannakakis and Togelius 2011) intro-
duces a framework of methods for creating and evaluating
experience-centric game content which offers personalized
gaming experience within a wide variety of game genres.

In this paper we introduce a number of aesthetic filters
for evaluating generated content from the perspective of a
player’s visual taste and preferences. Using these quantifi-
able visual properties as the fitness function of a genetic al-
gorithm, the content generator can optimize game elements
with the desired visual patterns as dictated either by the
player (online) or by a designer (offline). Our approach is
unique as it combines neuroevolution with constraint sat-
isfaction (introduced in (Liapis, Yannakakis, and Togelius
2011)) in order to create content which fulfills some mini-
mum requirements while posessing some visual properties
deemed important for human perception by studies in cog-
nitive psychology and neuroscience. Most importantly, the
paper proposes a novel framework for adapting a user pref-
erence model of visual taste by adjusting the importance
of each visual property in the content’s evaluation based
on the choices of one or more players. This allows for an
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indirect form of interactive evolution, where the player’s
choices affect the fitness function determining content qual-
ity, allowing for a more holistic aesthetic model. The pre-
sented framework is inspired by the Galactic Arms Race
game (Hastings, Guha, and Stanley 2009), yet it is distinct
in that it evolves the spaceships themselves rather than their
weapons, controls the generative process through constraints
and proposes an indirect form of preference modelling.

This paper builds and extends upon the study presented in
(Liapis, Yannakakis, and Togelius 2011) which focuses on
the optimization of performance of generated spaceships in
a space combat game. The current paper focuses on the op-
timization of visual properties of the spaceships’ form and
on the personalisation of a hand-crafted aesthetic model to
individual players. However, the methods suggested in this
paper are quite generic and not explicitly designed for creat-
ing spaceships; therefore results are often abstract shapes.

Related Work
Experience-Driven Procedural Content Generation
The game industry has in many cases preferred procedurally
generated to author-created content in order to increase the
unexpectedness or unpredictability of a game (and therefore
increase its replayability value) in games such as Diablo
(Blizzard North 1997) (for dungeons), Borderlands (Gear-
box Software 2009) (for items) or Civilization (MicroProse
1991) (for the world map). In recent years, the procedural
generation of content is also used during the development
of a game to limit development time and cost, with appli-
cations like SpeedTree (Interactive Data Visualization, Inc.
2010) and WorldMachine (Schmitt 1992).

Despite its long history within the game industry, the pro-
cedural generation of game content has only recently re-
ceived attention from the academic community. Experience-
Driven Procedural Content Generation (EDPCG) is intro-
duced in (Yannakakis and Togelius 2011) as a novel ap-
proach to procedural content generation geared towards op-
timizing the experience of the player. EDPCG is syn-
thesized by four main components: a Player Experience
Modeling (PEM) component, a Content Quality component
(which evaluates the generated content based on the PEM),
a Content Representation and a Content Generator compo-
nent which usually follows a search-based PCG method (To-



gelius et al. 2010). The EDPCG approach described in this
paper provides an efficient method for constrained optimiza-
tion, a versatile model for content representation, an evalua-
tion of visual quality rooted in theories of human perception
and an inclusive aesthetic model which can be adjusted to
the player’s preferences.

Interactive Evolution
Many EDPCG projects use an ad-hoc designed fitness func-
tion to assess content quality while others use interaction
with a human to guide evolution. Interactive Evolutionary
Computation (IEC) is “the technology in which EC opti-
mizes the target systems based on subjective human evalua-
tion as fitness values for system outputs” (Takagi 2001) and
is used extensively for content whose quality is subjective
and difficult to quantify. At its core, IEC utilizes a human
user to select individuals which will breed to create a new
generation. IEC is limited by the fact that user interest drops
as the number of choices they have to make increases. In
order to avoid user fatigue, most IEC projects find shortcuts
for reducing the number of choices imposed on their users.

In the current literature, IEC is used within EDPCG either
to provide an indirect player model based solely on game-
play metrics (side-stepping user fatigue) (Hastings, Guha,
and Stanley 2009) or to model a direct mapping between the
content and a desired player experience which is provided
either explicitly (e.g. through self-reports) or implicitly (e.g.
through biofeedback) (Pedersen, Togelius, and Yannakakis
2010). The interactive aesthetic model presented in this pa-
per is closer to the latter approach, as it provides a direct
mapping between content and visual taste.

Universal principles of visual perception
Many EDPCG (and evolutionary art) projects argue that in-
teractive evolution is a necessity, since purely stylistic or
aesthetic preferences are very difficult to recognize. How-
ever, research in cognitive psychology and neurobiology has
established certain universal properties of form which are in-
grained in human perception and are not subject to cultural
trends. Ramachandran has suggested “speculative and arbi-
trary” laws of art, such as symmetry, grounded mostly on ex-
periments and empirical studies of the brain (Ramachandran
and Hirstein 1999). On the other hand, Arnheim used cog-
nitive psychology to analyze the aesthetic appeal of shapes
and paintings within the art domain (Arnheim 1954). Intro-
ducing the term perceptual forces as the psychological and
physical forces that guide the viewers’ attention at specific
points and along specific axes of an object or scene, Arn-
heim attempted to identify the most important contributors
to the creation of these forces, such as weight and direction.

Methodology
The type of game content evaluated and optimized is a two-
dimensional spaceship (see Fig. 1). The spaceship consists
of a single polygon representing the hull, while weapons and
thrusters are attached to the edges of this hull. The space-
ship must fulfil some minimum requirements; if it does, its
aesthetic quality is evaluated based on principles of visual

Figure 1: A generated spaceship, in graphical display (left)
and within the game environment (right). W represents a
weapon and T represents a thruster.

perception. This section presents the process of the space-
ship’s generation and its evaluation, and the tools for its op-
timization. For space considerations the spaceship represen-
tation and the constrained optimization algorithm used are
presented briefly; more details on the methodology followed
can be found in (Liapis, Yannakakis, and Togelius 2011).

Representation
The generated spaceships are encoded as Compositional
Pattern-Producing Networks (CPPNs) (Stanley 2006) which
are specifically designed to represent content with regulari-
ties and which are capable of being optimized through arti-
ficial evolution. The CPPN receives a sequence of inputs in
the form of 2D coordinates (64 equidistant points on a cir-
cle) and returns a sequence of outputs corresponding to the
points of the spaceship hull’s pattern. Each output vector
consist of the 2D coordinates X and Y of each point and a
value which indicates if the point has a weapon or thruster
attached, if any. This sequence of outputs is translated into
the spaceship’s hull coordinates as well as specific weapon
and thruster types according to a collection of game-specific
parameters.

Constrained optimization
The CPPNs which encode the generated spaceships are op-
timized through Neuroevolution of Augmenting Topologies
(Stanley and Miikkulainen 2002) in which an initial popu-
lation of simple networks is iteratively augmented through
mutations, with similar networks being grouped together
into species and sharing their characteristics (links, nodes,
weights) through recombination. The presented neuroevolu-
tion approach satisfies the constraints imposed by the game
environment, the physics engine or the designer by simulta-
neously evolving two different populations. One population
includes all feasible individuals and is optimized according
to the objective function detailed in the following section
while the other includes all infeasible individuals, and its fit-
ness function is based on the total distance from feasibility
for all violated constraints. This two-population neuroevolu-
tion builds upon the work of (Kimbrough et al. 2008), which
proposes that by minimizing the distance from feasibility for
the infeasible population, their members will exist on the



(a) Bottom Half (b) Mid Third (on X axis)

Figure 2: Example weight distributions.

boundary of feasible space, where the optimum solution of-
ten lies (Schoenauer and Michalewicz 1996).

Aesthetic evaluation
Inspired from the works of Ramachandran and Arnheim,
some of the most important visual properties of the 2D
spaceships are symmetry, weight and direction. This pa-
per presents a set of four significant visual properties of
the spaceship’s hull, while more aesthetic properties, includ-
ing weapon- and thruster-specific ones can be found in (Li-
apis 2011). Visual quality is assessed solely on the space-
ship hull’s shape (ignoring color, lighting and other aes-
thetic properties) because, with the current representation,
the spaceship’s form has the greatest representational free-
dom (and therefore intrinsic value). Additionally, the space-
ship hull’s shape also determines the spaceship’s mass, cen-
troid and alignment of thrusters and weapons, therefore af-
fecting the spaceship’s movement pattern and, indirectly, its
overall performance.

Symmetry can be measured by reflecting the hull of the
spaceship along an axis passing from its midpoint. The fit-
ness score for symmetry is computed as:

fS = A∩/A∪ (1)
where A∩ the surface of the common area in the base and
the reflected shape and A∪ the surface of the area occupied
by either the base or the reflected shape.

Weight (or weight distribution) can be measured by cal-
culating the surface of a “focus” part of the spaceship’s hull
(see Fig. 2). The fitness score for weight is computed as:

fW = µW (Ap/A) (2)
where Ap the surface of the “focus” part of the spaceship’s
hull and A the surface of the entire spaceship’s hull. µW (x)
is a membership function indicative of the proximity with
the desired weight distribution in the “focus” part.

Direction is measured by the angle of the least squares
line of the hull’s points (see Fig. 3). The fitness score for
direction is computed as:

fD = µD(φ) (3)
where φ the angle between the least squares line and the
positive Y axis, and µD a membership function indicative of
the proximity with a desired angle.

Figure 3: Direction as
the least squares line.

Figure 4: Containment within
a triangle pointing forward.

Containment builds on the notion of weight, but the “fo-
cus” part of the spaceship’s hull is determined by a more
complex shape acting as a “cookie cutter” (see Fig. 4). The
fitness score for containment is computed as:

fC = Ac/A (4)
where Ac the surface of the part of the spaceship’s hull con-
tained within the designated shape and A the surface of the
entire spaceship’s hull.

Interactive adaptation of the aesthetic model
The individual fitness scores presented in the previous sec-
tion can be used on their own to optimize a single visual
property such as symmetry or direction, or can be aggre-
gated into a weighted sum representing a more inclusive
aesthetic model. By using a weighted sum as the feasible fit-
ness, the constrained optimizer can create content with high
scores in many different visual properties. In such cases,
the fitness function (also identified as aesthetic score or F ),
is the weighted sum normalized to [0, 1]. Using a weighted
sum for deriving a single fitness score allows for the weights
of this quality approximation to be adjusted in a straightfor-
ward fashion based on in-game player’s choices. Through
this weighted sum, the evolution’s objective function sub-
sititutes user input with a personalised aesthetic model and
limits user fatigue.

Treating the aesthetic score F as a single artificial neu-
ron with a linear activation function allows this quality ap-
proximation to incrementally adjust its weights towards the
desired output as dictated by player choices. If a player is
presented with a single spaceship, selecting it corresponds
to a desired output of 1 and discarding it corresponds to a
desired output of 0. If presented with more than one space-
ships, the user selects one and discards the others; in order to
take both selected and discarded spaceships’ visual proper-
ties into account, weight adjustment is performed according
to eq. (5), which is a variation of the weight update rule,
until the selected spaceship has a higher aesthetic score than
all unselected ones:

∆wi = −η

(Fs − 1)
∂Fs

∂wi
+

Nu∑
j=1

(
Fuj

∂Fuj

∂wi

) (5)

where wi the weight for the i-th visual property, η the learn-
ing rate, Fs the aesthetic score of the selected spaceship, Fuj



Table 1: Fitness of the best individual at the beginning and
the end of constrained optimization of a single visual prop-
erty across 5 individual runs.

f1 f2 f3 f4 f5
First Mean 0.77 0.00 0.00 0.72 0.53
feasible St.Dev 0.19 0.01 0.00 0.30 0.12
After Mean 1.00 1.00 1.00 1.00 0.96
100 gen. St.Dev 0.00 0.00 0.00 0.00 0.01

the aesthetic score of the j-th unselected spaceship and Nu

the number of presented spaceships that were not selected.

Experiments
This section presents the results of the neuroevolutionary
constrained optimization algorithm when one or more visual
properties are targeted, and concludes with an experiment in
adaptive content generation using a player-dependent aes-
thetic model.

Offline optimization of a single visual property
Each of the visual properties identified in the previous sec-
tion can be used on their own as a fitness function for fea-
sible individuals in the constrained optimization algorithm.
This section demonstrates the optimization process of five
different visual properties; these visual properties and their
corresponding fitness scores (f1 to f5) are as follows:

f1 is the fitness score for symmetry (see eq. (1)) with the
axis of symmetry being a line parallel to the world’s Y
axis and passing through the spaceship’s midpoint.

f2 is the fitness score for weight (see eq. (2)) using the bot-
tom half of the spaceship as the “focus” part (see Fig.2(a))

and µW.75(x) = e
−(x−0.75)2

2·0.0332 as the membership function
µW (x).

f3 is the fitness score for weight (see eq. (2)) using the mid
third of the spaceship (on the X axis) as the “focus” part
(see Fig. 2(b)) and µW.75

(x) as the membership function
µW (x) (described above).

f4 is the fitness score for direction (see eq. (3)) evaluating
proximity with the Y axis and with µD(x) = |sin(x)|.

f5 is the fitness score for containment (see eq. (4)) using
a forward-pointing triangle as the containing form (see
Fig. 4).

Table 1 presents the fitness scores of the best feasible in-
dividuals at the beginning and the end of a constrained opti-
mization process (after 100 generations), with a population
of 250 individuals. The means and standard deviations are
calculated from 5 individual runs. The first feasible indi-
vidual in the population is used in the calculation of ini-
tial scores regardless of the generation it occured. Fig. 5
presents the best final individuals among the 5 different runs;
since the presence of thrusters and weapons is neither nec-
essary (for functional purposes) nor contributes to the evalu-
ation of visual properties, the generated spaceships have no
thrusters or weapons attached.

Table 2: Fitness (F ) of the best individual at the end of con-
strained optimization of five visual properties, and its com-
ponents (f1 to f5) among 10 individual runs.

F f1 f2 f3 f4 f5
Mean 0.73 0.78 0.89 0.19 0.98 0.80
St.Dev 0.04 0.15 0.31 0.40 0.04 0.10

Each of the five visual properties show different behaviors
in their optimization. Because the sequence of points used as
input to the CPPN are on a circle which is symmetrical along
the X and Y axis, the resulting spaceships (especially with
simple networks) are more likely to be symmetrical (f1) and
very unlikely to have the desired weight distribution of f2
and f3. Since the membership function of f2 and f3 is very
specific (returning 0 or near 0 for most shapes and high fit-
ness scores only for shapes with the desired pattern), only
the complexification of networks guided by the continuous
fitness score fW can lead to the discovery of individuals with
the desired weight distribution. Unlike weight distribution,
containment (f5) has no membership function and therefore
many shapes may have average or high fitness scores for it.
The same applies to direction (f4), whose membership func-
tion has high scores for many different angles φ.

(a) f1=1.00 (b) f2=1.00 (c) f3=1.00 (d) f4=1.00 (e) f5=0.98

Figure 5: Best final individuals among 5 independent runs
for the different visual properties being optimized.

Offline optimization of multiple visual properties
While the optimization of a single visual property leads to
highly fit content, it is only through the combination of dif-
ferent visual patterns that a meaningful spaceship shape can
be identified. This section presents an experiment which
uses the normalized weighted sum (all weights at 1) of the
fitness scores f1 to f5 as its objective function F . The re-
sults of the optimization process for 100 generations on a
population of 250 individuals are shown in Table 2 collected
through 10 individual runs, while the progress of the best in-
dividual for the most successful run is also presented graph-
ically in Fig. 6.

Fig. 6 shows an overall increase of the aesthetic score F
from its initial values; however, Table 2 indicates that not
all of the contributing visual properties are optimized to the
same degree. The most noteable disparity are the two weight
properties (f2 and f3). In the final best individuals, f2 is the
highest scoring among the contributing visual properties in
all but one runs, while in only two runs does the best space-
ship have a contribution from f3; however, both f2 and f3
have a very similar behavior when optimized on their own.
A number of factors affect this outcome: firstly, f2 and f3
have a membership function µW which requires a very spe-



Figure 6: Stacked area plot of the best individual’s optimiza-
tion progress using a model of five visual properties. Also
displayed are the phenotypes of the first feasible individual
(far left) and the best individuals in 20 generation intervals.

cific visual pattern, so most spaceships will either have a
score of 0 or a high score in these visual properties; a space-
ship either has the desired weight distribution or it doesn’t.
Compared to aesthetic properties with a more lenient mem-
bership function (µD for f4) or none at all (f1,f5), a space-
ship with the desired visual pattern for f2 or f3 has a large
advantage to one that does not; this is not true for the other
visual properties. Most shapes have a considerable score
for f1, f4 or f5 since their desired visual patterns are much
more generic, while most shapes have a score of 0 for f2
and f3. By design, therefore, any fW with the given mem-
bership function is expected to dominate the aggregated fit-
ness score if the targeted weight distribution is found; this
explains why f2 is usually optimal in the best final space-
ships. On the other hand f3 is mostly absent from the best
individuals because both f2 and f3 are pattern-specific: once
a spaceship with a high score in f2 is found, the discovery
of a spaceship with a high score in both f2 and f3 becomes
much less likely. Fig. 6 presents the only run where both
f2 and f3 have a high score at the end of the optimization
process.

As expected, the aggregated approach to optimizing mul-
tiple visual properties suffers from dominant solutions; how-
ever, it does manage to create spaceships with high fitness
scores for most contributing aesthetic properties and can be
even more successful with a more sophisticated selection of
targeted visual patterns.

Online adaptation of the aesthetic model and the
generated content
As a proof of concept for the interactive adaptation of the
aesthetic model presented in the previous section, an experi-
ment was conducted using the online adjustment of both the
aesthetic model and the content generated based on it.

The experiment revolves around a series of iterations: in
each iteration a range of shapes is presented and the user
selects the preferred one among them. Based on this selec-
tion the aesthetic score is re-evaluated according to eq. (5)
and new shapes are evolved from those currently presented
using an objective function from the updated aesthetics. In
order to make online evolution manageable in terms of time,
the initial shapes were loaded from a pretrained collection,
the total population (feasible and infeasible) was limited to
40 individuals and the number of generations between each
iteration was limited to 5. Furthermore, instead of the inclu-
sive aesthetic model only two visual properties were evalu-
ated and optimized during each iteration. Choosing from a
large pool of visual properties, the two properties with “the
most different” scores between the selected individual and
all unselected ones are chosen and combined together into a
weighted sum serving as the objective function for the cur-
rent iteration. The difference (δi) with regards to a visual
property i is computed as:

δi =

N∑
k=1
k 6=s

|fik − fis | (6)

where s is the selected individual, N is the number of pre-
sented individuals and fik is the score of individual k for the
i-th visual property.

Figure 7: Final results of the online evolutionary session for
five different participants.

The experiment included 26 participants, most of which
evolved content for 10 to 20 iterations. The same initial
spaceship shapes were presented to all participants, while
subsequent iterations presented only content which was dis-
tinct from each other. Although certain participants evolved
content which was not of particular visual interest (varia-
tions of skewed circles similar to the CPPN’s input), many
participants generated very different spaceship shapes at the
end of their sessions, both from each other and compared to
the initial shapes. For space considerations, Fig. 7 demon-
strates the most interesting results of this experiment and
showcases the variety of spaceship designs which are driven
by personalized aesthetic models of participants. Despite the
fact that the framework focuses on genereating aesthetically
pleasing spaceships, users were not required to specifically
target spaceship shapes but were encouraged to choose any
shape they found most appealing. This explains why not



many of the final results bear any resemblance to spaceships;
the focus of this experiment was the potential of adapting a
context-independent personalized aesthetic model. In future
work, we will consider explicitly requiring that users choose
shapes appropriate for use as spaceship hulls.

Conclusion
This paper presented a constraint satisfaction PCG frame-
work used to optimize the shape of spaceships according to
visual properties deemed taste- and context-independent by
studies on the field of human perception. By ensuring that
constraints imposed by the game engine and a human de-
signer are met by feasible individuals, the content generator
operates in a much more limited search space. The visual
properties presented in this paper are only a sample of pos-
sible quantifiable aesthetic characteristics that have been in-
troduced in (Liapis 2011) pertaining to simplicity, cost, or
weapon- and thruster-specific properties. These aesthetic
evaluations can be used in conjunction with evaluations of
the generated content’s performance in game-specific tasks,
as presented in (Liapis, Yannakakis, and Togelius 2011), to
create both functional and visually appealing spaceships.

Experiments in the optimization of a single visual prop-
erty have as a whole shown promising results. On the other
hand, the aggregation of multiple visual properties in a sin-
gle fitness score (as a weighted sum) is not guaranteed to
generate results with all the required visual patterns. The
evaluation of content in the form of a weighted sum al-
lows for the adaptation of this heuristic according to player
choices, allowing for the creation of personalized compu-
tational models of visual taste. For future work, we will
consider a multi-objective evolutionary approach for the op-
timization of multiple visual properties. The argument for
the aggregated approach is the potential for an interactive
aesthetic model; however, a lexicographic ordering method
could also take the aesthetic model into account by assigning
higher importance to visual properties with larger weights.

Although targeted visual properties are often achieved
within a number of generations using the proposed con-
strained optimizer, it should be noted that the resulting
shapes are not particularly reminiscent of spaceship hulls. In
future work we will limit the current representational free-
dom to ensure the generation of recognizeable spaceships.

The framework and algorithm proposed is applicable be-
yond the scope of spaceship design; the visual properties
presented in this paper can be applied to any 2D game el-
ement. Additionally, the evaluation of content quality can
be used as an authoring tool in game development: while
the neuroevolutionary constrained optimization of multiple
visual properties certainly has room for improvement, the
adaptive aesthetic model in the form of a weighted sum can
also be useful for evaluating existing content. This aesthetic
model can select the most suitable game content for a partic-
ular player’s visual taste from a collection of pre-generated
or procedurally generated content. The player’s choices can
be used to adapt the aesthetic model much like the experi-
ment presented in this paper and without the need for on-
line evolution of new content. The fact that such a person-
alized aesthetic model can be combined with the evaluation

of competencies in game-specific tasks, which is presented
in (Liapis, Yannakakis, and Togelius 2011), allows for a
personalized experience where the presented content is to
the player’s taste and its functionalities are tailored to their
playstyle or challenge level.
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