Procedural Personas as Critics for Dungeon Generation

Antonios Liapis!, Christoffer Holmgard?,
Georgios N. Yannakakis'2, and Julian Togelius?

! Institute of Digital Games, University of Malta, Msida, Malta
2 Center for Computer Games Research, IT University of Copenhagen, Copenhagen, Denmark
antonios.liapis @um.edu.mt, holmgard @itu.dk, georgios.yannakakis @um.edu.mt, juto@itu.dk

Abstract. This paper introduces a constrained optimization method which uses
procedural personas to evaluate the playability and quality of evolved dungeon
levels. Procedural personas represent archetypical player behaviors, and their
controllers have been evolved to maximize a specific utility which drives their
decisions. A “baseline” persona evaluates whether a level is playable by testing
if it can survive in a worst-case scenario of the playthrough. On the other hand, a
Monster Killer persona or a Treasure Collector persona evaluates playable levels
based on how many monsters it can kill or how many treasures it can collect, re-
spectively. Results show that the implemented two-population genetic algorithm
discovers playable levels quickly and reliably, while the different personas affect
the layout, difficulty level and tactical depth of the generated dungeons.

1 Introduction

The generation of dungeons is one of the first instances of procedural content genera-
tion (PCG) with Rogue (Toy and Wichman 1980). Since then, many games have used
algorithms to generate dungeons, e.g. Diablo (Blizzard 1996), Daggerfall (Bethesda
1996) and Daylight (Zombie Studios 2014). Generating dungeons has also been a fer-
tile research topic as summarized by [1]; algorithmic approaches using constraints [2],
grammars [3] and genetic algorithms [4] have been successfully applied to this task.

This paper introduces a method where procedural personas act as critics in a search-
based procedural content generation (SBPCG) framework [5]. Procedural personas are
artificial agents which represent archetypical player behaviors (e.g. rushing to the goal,
killing monsters, collecting treasures). In this paper, the personas have been evolved
on a set of authored dungeons, according to different fitnesses that match archetypical
decisions-making priorities. The testbed game, named MiniDungeons, is a simple turn-
based roguelike game; the game has been tested by human users and a close match
between procedural persona playstyle and human playstyle was found [6].

Using procedural personas to test the evolving dungeons situates the proposed
method as a type of simulation-based SBPCG. However, the persona-critics are used
not only to evaluate how appropriate a dungeon is for a particular playstyle, but also
whether the dungeon is actually playable. The requirement that a dungeon can be com-
pleted by a simple “baseline” persona — despite any stochasticity of the gameplay
— adds another constraint to the generative process. This paper uses a two-population
genetic algorithm for the purposes of constrained optimization, which evolves both fea-
sible and infeasible dungeons [7]. Dungeons are tested by a “baseline” persona based

on whether it can complete a worst-case scenario of the dungeon; this persona also eval-
uates infeasible dungeons’ distance from feasibility. Playable levels are evaluated by a
Monster Killer persona or a Treasure Collector persona based on how many monsters it
can kill or how many treasures it can collect, respectively.

2 Previous Work

This Section covers the core background material (testbed game, procedural personas
and evolutionary level design) on which the presented method is built.

2.1 MiniDungeons game

MiniDungeons is a simple turn-based roguelike puzzle game, implemented as a bench-
mark problem for modeling decision making styles of human players [8]. MiniDun-
geons levels are laid out on a grid of 12x12 tiles: tiles can be walls (which obstruct
movement), empty, or contain monsters, treasure, the level’s entrance or exit. The player
has full information of the level except for monsters’ damage, as discussed below.

In MiniDungeons, a hero (controlled by the player) starts at the level’s entrance and
must proceed to the level exit: stepping on the exit tile concludes a level and loads the
next one. A hero starts each level with 40 hit points (HP) and dies at 0 HP. The hero
can collect treasure by stepping on treasure tiles: treasures have no in-game effect but a
treasure counter is shown on the user interface. The hero can drink potions by stepping
on potion tiles: potions heal 10 HP, up to the maximum of 40 HP. Finally, the hero can
kill monsters by stepping on monster tiles: monsters do not move and only engage the
hero if the hero moves onto their tile. Combat is stochastic: a monster deals a random
number between 5 HP and 14 HP of damage to the hero and then dies.

For the purposes of collecting player data as well as for evolving procedural per-
sonas, ten Minidungeons levels were created in advance (see Fig. 1). These levels were
designed in a mixed-initiative fashion [9] and had several patterns which allowed dif-
ferent decision making styles to be exhibited. The authored levels have many branching
points, but usually include an easy path (with minimal combat) between the entrance
and the exit. Moreover, treasures and potions are often “guarded” by monsters, although
some treasures are easily accessible and some monsters do not obstruct any paths. These
patterns allow for different ways of traversing the level, as will be seen in Section 2.2.

2.2 Procedural Personas

The MiniDungeons game was created for two purposes: (a) to investigate how human
players enact decision making styles in a simple game, and (b) to construct artificial
agents able to represent such decision making styles.

A core assumption of decision theory [10] is that human decision making under risk
and uncertainty is shaped by utility. A utility function determines the decision maker’s
willingness to take risks for an expected reward, and is considered idiosyncratic. In
digital games, the game’s mechanics constitute affordances [11] which are likely to
be of utility to the player. Using the MiniDungeons game as a testbed, 38 participants

n%
i

_,ﬂ !

(a) Player #1 (b) Player #2 (c) Player #3 (d) Baseline (¢) Monster (f) Treasure
persona Killer Collector

Fig. 2: Playtraces of human players and evolved procedural personas of MiniDungeons.

played all 10 levels of Fig. 1, as covered in detail in [6]: a few participants managed
to collect all the treasures in every level (see Fig. 2a), while others rushed to the exit
(see Fig. 2b) or miscalculated the risk of combat and died (see Fig. 2¢). Such mechanics
(treasure collection, death, reaching the exit) are thus likely sources of utility to players.

Procedural personas are artificial agents which represent archetypical decision mak-
ing styles. In MiniDungeons, procedural personas consider several gameplay and level
elements as sources of utility: killing monsters, collecting treasures, reaching the exit,
performing as few actions as possible, or avoiding death. Previous work identified five
procedural personas: a Monster Killer, a Treasure Collector, a “baseline” persona, a
Speedrunner and a Survivalist, respectively. For the purposes of this paper, generated
dungeons will be evaluated by personas evolved on all dungeons of Fig. 1 as per [6].
The controller for each persona is a combination of 7 linear perceptrons, with inputs be-
ing the hero’s HP and distance to different elements (e.g. closest potion, closest “safe”
treasure) and outputs being the desirability of a strategy (e.g. go to closest potion, go
to closest treasure that does not involve combat). The strategy with the highest value is
selected by the agent; the decision is re-evaluated in every step rather than upon comple-
tion of the strategy. The perceptrons’ weights were evolved via an (i 4+ \) evolutionary
strategy without self-adaptation. The fitness of each agent was calculated from the util-
ities collected after all 10 levels were played. Focusing on the personas used in this
paper, the baseline persona received a boost to its fitness for every exit it reached; the
Treasure Collector received a fitness boost for every treasure collected and a smaller
boost for every exit reached; the Monster Killer received a fitness boost for every mon-
ster killed and a smaller boost for every exit reached. Optimizing the controllers for
these fitnesses resulted in personas exhibiting very different behaviors (see Fig. 2d-2f).

The evolved procedural personas were compared to the human playtraces, in terms
of persona-player agreement ratio. In every step a human took when playing, the per-
sona was queried “what would be your next action given this game state?”: if the per-
sona’s chosen action matched the human’s, the agreement ratio increased. Summarizing
the results of [6], most players had the highest agreement ratio with the Treasure Col-
lector persona, while a smaller number of players matched the Monster Killer persona.

2.3 Constrained Optimization of Game Levels

Previous experiments on the constrained optimization of game levels focused on gen-
erating map sketches, i.e. low-resolution, high-level abstractions of complete levels [9].
Map sketches contain a small number of tiles which represent the most significant fea-
tures of a level of a specific genre (e.g. weapon pickups in shooter games, player bases in
strategy games). The simplicity of a map sketch allows it to be evolved in a straightfor-
ward and computationally lightweight manner. Map sketches of strategy games, rogue-
like dungeons and first-person shooters have been evolved according to a generic set
of objectives which can be customized to the game genre at hand [12]. The constraints
of such map sketches revolve around the connectedness between level features: for in-
stance, in a map sketch for a strategy game all bases must be connected (via passable
paths) with each other and with all of the map’s resources. In order to ensure constraint
satisfaction, evolution has been carried out via a FI-2pop GA [7] which can discover
feasible individuals quickly and reliably even in highly constrained spaces [13].
Minidungeons levels differ from map sketches in the fact that, despite a similarly
small map size, they are directly playable. This introduces additional constraints on
Minidungeons levels in that they must be completable by procedural personas. More-
over, previous experiments optimized map sketches according to hard-coded objectives
inspired by game design patterns [14], while Minidungeons levels are evolved accord-
ing to the play experience of the procedural personas that playtest them. In that regard,
the procedural personas act as critics both on the playability and on the quality of the
generated level: how this affects the evolutionary process will be explored in Section 4.

3 Methodology

This Section describes the two-population genetic algorithm used to evolve Minidun-
geons levels, as well as the methods for assessing playability (the infeasible fitness
function) and level quality (the feasible fitness function) via procedural personas.

3.1 Evolving Levels for Minidungeons

A Minidungeons level consists of 144 tiles, which can be empty or contain walls, mon-
sters, treasures, potions, the level entrance or the level exit. In the genotype, a Minidun-
geons level is represented directly as an array of integers: each integer describes the
contents of a single tile in the level.

Due to the constraints on playability (discussed in Section 3.2), Minidungeons lev-
els are evolved via a feasible-infeasible two-population genetic algorithm (FI-2pop

GA). The FI-2pop GA separates feasible individuals from infeasible ones (which do
not satisfy one or more constraints), placing the former in a feasible population and
the latter in an infeasible population [7]. The feasible population evolves to optimize
the domain-specific measure of quality, while the infeasible population evolves to mini-
mize its members’ distance from the feasible border. As infeasible individuals approach
the border of feasibility, the chances that their offspring will be feasible increase. Fea-
sible offspring of infeasible parents migrate to the feasible population, and vice versa:
this indirect form of interbreeding may increase the size and diversity of the feasible
population. In order to ensure that the feasible population is sufficiently large for effi-
cient optimization, the offspring boost mechanism is applied to the FI-2pop GA. The
offspring boost is applied in cases where the feasible population is smaller than the in-
feasible population, and forces both feasible and infeasible populations to produce an
equal number of offspring regardless of the number of parents in each population.

In the experiments described in this paper, evolution of Minidungeons levels is
driven by asexual mutation alone; preliminary experiments showed that recombination
is slower to discover feasible individuals and can result in multiple entrances or exits in
the same dungeon. Mutation may transform an empty tile to a wall tile and vice versa,
a level feature (non-wall, non-empty tile) may swap places with another level feature
chosen randomly, or any tile may swap places with an adjacent one. Every offspring
has 5% to 20% of its tiles (chosen randomly) mutated in the above fashion. By evolving
content solely via this mutation scheme, an offspring is ensured to contain the same
number of monsters, treasures, potions, level entrances and level exits as its parent.
Parents are chosen via fitness-proportionate roulette wheel selection; the same parent
may be chosen multiple times to generate offspring. In each population (feasible and
infeasible), the best individual is transferred to the next generation unchanged.

3.2 Assessing Playability with Personas

In order for a MiniDungeons level to be playable, a number of constraints need to be
satisfied: (a) the level must contain a specific number of tiles of certain types, e.g. one
entrance and one exit, (b) all features of the level (monsters, potions, treasures, exit)
must be accessible via passable paths to the hero, and (c) the hero must be able to reach
the exit without dying. Constraints of type (a) are automatically satisfied by seeding
the initial population with levels containing the desired number of level features: since
mutation does not add or remove features, the number of features in the initial popula-
tion will remain constant throughout the evolutionary process. Constraints of type (b)
require that a passable path exists between the level entrance and all other features in
the level: levels that fail this constraint are evaluated based on how many features are in-
accessible. Finally, constraints of type (c) require that an agent simulates a playthrough
of the level. In order to ensure that the level can be completed regardless of the stochas-
ticity of combat, a ‘worst-case’ scenario is constructed by assigning maximum damage
(14 HP) to all monsters of the level. The agent chosen to perform the playthrough is
the baseline persona, whose affordance is only to reach the exit: this persona does not
get “distracted” by treasure or monsters, and is likely to finish the level quickly. If the
baseline persona dies then this constraint is failed: however, an additional check for the
number of tiles explored by the persona is performed. This additional constraint was

added after preliminary experiments in order to ensure that the entrance and exit are
not close to each other, so that even speedrunners face at least a minimal challenge. If a
baseline persona completes the level having explored less than 12 tiles, the level fails to
satisfy the constraint of type (c) and is evaluated based on how many tiles the baseline
persona explored, or a worse score if the baseline persona died.

Combining constraints (b) and (c) into a fitness measure for infeasible content, the
distance to feasibility is calculated via d;,, r of eq. (1). The infeasible population evolves
to minimize d;, ¢, which increases the chances of feasible content being discovered.
Observing d;y, r, there is a clear priority between constraints: levels that fail constraints
of type (b) automatically fail constraint (c) and assume that the baseline persona died
without even testing for it. Moreover, if a baseline persona dies then the level receives
a much worse score than if it completes the level, even within a very small number of
steps. This aims to guide infeasible content towards first becoming well-formed (with
all features accessible to the hero), then minimally playable for the baseline persona.

1+% ifuy >0
ding =141 if baseline persona died (1)
£(1—£2) if baseline persona completed the level with s < Cj

where N is the total number of level features (monsters, potions, treasures, exit) and
un is the number of features which are not accessible from the level entrance; sp is
the number of tiles explored by the baseline persona in the worst-case scenario (all
monsters dealing maximum damage) and C; is the minimum number of explored tiles
for a level to be considered feasible (C's = 12 in this study).

3.3 Assessing Level Quality with Personas

The main contribution of the procedural personas is towards the evaluation of feasi-
ble, playable game levels. However, it is not obvious what a persona (or indeed the
human players it represents) looks for in a level. Granted that the decisions of proce-
dural personas are shaped by their own utility functions, only events which affect their
utility should be considered. This paper will consider the two most dominant (and dis-
tinct) procedural personas of past experiments: the Monster Killer (with a utility for
killing monsters and reaching the exit) and the Treasure Collector (with a utility for
collecting treasure and reaching the exit). Most playtraces of the 38 human players who
tested MiniDungeons matched the Treasure Collector persona (86%), while the Mon-
ster Killer was second (8%). When evaluating a level it has just finished playing (either
by reaching the exit or by dying), the Monster Killer assigns the score of eq. (2) while
the Treasure Collector assigns the score of eq. (3). The values of C,,, C; and C). are
taken directly from the fitness function which guided the evolution of each persona’s
controller!; the persona was evolved on 10 authored levels (see Fig. 1) and was evalu-
ated on how it represents an archetypical decision making style (a Monster Killer that

! The fitness function of all personas’ controllers included a penalty for taking extraneous ac-
tions. Since this penalty was a control mechanism to avoid playthroughs taking too long rather
than an explicit utility, it is omitted for the purposes of level evaluation.

kills most monsters, a Treasure Collector that collects most treasure) [6]. Inversely, the
scores of eq. (2) and (3) evaluate whether the level provides the desired utilities to per-
sonas that play optimally towards attaining them.

Suxc = (e @
_ (deC+Chrr)
Src = (N:C+Cr) 3

where N,,, and NV, is the number of monsters and treasures in the level respectively; d,,
and d; is the number of dead monsters and collected treasures respectively; r is 1 if the
hero reached the exit and 0 if not; C,,,, C; and C,. are constants expressing the priority
of monsters, treasures and level completion (respectively) in each persona’s utility; for
these personas C,,, = C; = 1 and C,. = 0.5. The denominator normalizes the score of
eq. (2) and (3) between 0 (no affordances acquired) and 1 (all affordances acquired).
Intuitively, a persona prefers levels that allow it to maximize its utility function:
i.e. a Monster Killer prefers levels that allow it to kill all monsters and a Treasure
Collector prefers levels that allow it to collect all treasure. Due to the stochastic nature
of combat, the same level is played by a persona multiple times (R=10 in this paper)
with damage for each monster randomized in each playthrough. When maximizing the
level’s utility for a persona, the simulations’ S,k and S scores are averaged in the
fitness of eq. (4) for a Monster Killer, and eq. (5) for a Treasure Collector, respectively.

Fuk =% Zil S (7) €]
Fre =410 Sroli) 5)

Maximizing the utility function of a persona, however, may be somewhat naive con-
sidering the decisions taken within MiniDungeons. Maximizing the utility of a Treasure
Collector, for instance, can be trivially solved by placing all the treasure in a straight
path between the level entrance and the level exit. In such cases, the player does not
take a decision at any point during play; there is no risk/reward where the idiosyncratic
utility function would shape the decision. In order to provide an element of risk, and
thus require that the persona makes meaningful decisions, the level can be evaluated on
how different a playthrough is from the next. Due to the randomness of combat, dif-
ferent playthroughs by the same persona may result in a premature death, in more or
fewer treasures collected or monsters killed. Using the standard deviation of Sy, x and
St among the 10 simulations, eq. (6) (for a Monster Killer) and eq. (7) (for a Treasure
Collector) aim to maximize the levels’ risk involved in personas’ decisions.

Dy = \/ﬁ Zil(SMK(i) — Fur) ©)

Drc = \/ﬁ Zf;(sTC(i) - Frc) @)

4 Experiments

The experiments described in this section test how the different procedural personas
(Monster Killer and Treasure Collector) and different fitness functions of eq. (4)-(7)
affect the evolutionary process and the final generated dungeons. Dungeons generated
in this paper have the same properties as those of Fig. 1: a 12 x 12 tile grid contain-
ing one entrance, one exit, 8§ monsters, 7 treasures and 4 potions (21 level features in
total). All experiments in this paper were performed with a population size of 20 (in-
cluding feasible and infeasible levels), and evolution runs for 100 generations; results
were averaged from 20 independent evolutionary runs and each level is evaluated by a
procedural persona via 10 playthroughs.

4.1 Discovery of feasible content

Despite the small map size of MiniDungeons, the constraints of connectivity of 21 level
features and that of baseline persona survival were expected to make discovery of fea-
sible individuals by random chance highly unlikely. Out of 10 randomly initialized
levels, 360 were feasible (for all constraints) and 958 satisfied the constraints of con-
nectivity, i.e. uy = 0 in eq. (1). Evolving infeasible individuals allowed the FI-2pop
GA to discover playable levels quickly despite the limited population size: the first
feasible individual was discovered on average after 14.39 generations? (standard error:
1.40). This performance of the FI-2pop GA can be compared with a single population
approach which handles infeasible individuals by applying the death penalty (i.e. fitness
of 0). Using the same parameters as the FI-2pop GA and performing 20 evolutionary
runs with each of eq. (4)—(7) (80 runs in total), the single population approach did not
discover any feasible individuals in 21 of 80 runs (while all runs of the FI-2pop GA dis-
covered playable levels). Moreover, among those runs where feasible individuals were
found when using the death penalty, discovery of playable levels occurred after 35.42
generations (standard error: 0.84). As the difference in generation of discovery between
FI-2pop GA and single-population GA is statistically significant (p < 1076 via two-
tailed Student’s ¢-test assuming unequal variances), it is clear that the FI-2pop GA can
discover playable Minidungeons levels faster and more reliably.

4.2 Quality of feasible content

Figure 3 displays the best final evolved levels of 20 evolutionary runs, for each fitness
function of eq. (4)—(7). To better demonstrate the levels’ gameplay, each level is accom-
panied by a visualization of different playthroughs of the persona that evaluates it. Lev-
els evolved towards F; i tend to allow access from the entrance to the exit as well as
to most potions (i.e. no monsters guard those level features); therefore it is the players’
decision to pursue combat without it being forced upon them. Levels evolved towards
Fre tend to leave most treasures unguarded (in Fig. 3b only one treasure, near the exit,
is guarded by a monster) and therefore collecting all treasures is not a risky choice for

% Since the infeasible fitness (d;,) is the same for all experiments, discovery of the first feasible
individual is calculated based on all four sets of experiments (Farx, Frc, Dvi, Dre).

(©) Duk

Fig. 3: Best evolved levels for the different fitness functions of eq. (4)-(7). The levels
shown have the highest fitness among 20 independent runs. Above each level are two
playthroughs of the persona for which the level is evolved (Monster Killer or Treasure
Collector), with randomized damage values for each monster.

the player. Levels evolved towards D), tend to place more monsters at chokepoints,
therefore guarding many of the level’s features such as the exit, potions and treasure:
in Fig. 3c the hero must face a minimum of two monsters in order to reach the exit,
and a minimum of three monsters to reach the treasures in the middle of the map (the
exit tile can not be crossed as it ends the level). Levels evolved towards Dp¢ similarly
place monsters at chokepoints: in Fig. 3d two monsters must be fought to reach the exit
as well as the treasures in the middle of the map. While the Treasure Collector persona
could theoretically have fought those two monsters and gained access to the 6 otherwise
unguarded treasures, it opted to go for the bottom right treasure which often caused it
to die. This odd decision demonstrates the bias introduced by the representation of the
personas’ controllers (the Treasure Collector went for the closest guarded treasure in
this case) and by the levels they were evolved on (which rarely had so many monsters
clustered in a map corner). This issue will be further discussed in Section 5.

To evaluate the quality of a generated level, the utility function of its persona-critic
is a straightforward performance metric. Expanding on that, the quality of the persona’s
playthroughs in each level can be captured by other gameplay metrics, such as number
of tiles explored, actions taken or times the persona died. Table 1 contains the game-
play metrics of the best final evolved levels as evaluated via 10 playthroughs of its
persona-critic. Values in parentheses represent the deviation between playthroughs of
the same level (rather than deviation between levels). For comparative purposes, Table
1 includes the gameplay metrics of the authored levels of Fig. 1, on which the personas
were evolved. Observing Table 1, there is a clear difference between Monster Killer
personas and Treasure Collector personas: Monster Killers kill far more monsters (un-
surprisingly), drink more potions, die far more often and take much more damage than
Treasure Collectors. Comparing between levels evolved towards Fisx and Dk, the
former can be played by a Monster Killer persona more efficiently: more monsters are
killed, more potions drunk and less deaths occur than with D ;. The high death ratio

|Monsters ‘ Treasures‘ Potions ‘ Explored ‘

Actions

‘Death Ratio‘ Damage

Monster Killer

Auth.
Fur
Dy

747 (0.47)
7.91 (0.23)
6.16 (1.15)

0.95 (0.21)
2.90 (0.28)
2.39 (0.45)

3.77 (0.15)
3.99 (0.05)
3.58 (0.51)

45.19 (4.57)
4434 (2.32)
35.66 (6.09)

70.64 (10.34)
78.81 (9.11)
53.70 (12.75)

0.68 (0.42)
0.43 (0.47)
0.92 (0.13)

68.64 (5.25)
72.63 (5.64)
54.23 (6.16)

Treasure Collector

Auth.

Fre
Drc

5.93 (0.42)
2.68 (0.03)
3.30 (0.83)

6.52 (0.61)
7.00 (0.00)
4.59 (2.07)

2.47 (0.49)
3.57 (0.02)
2.34 (1.29)

52.03 (6.12)
43.57 (0.15)
30.63 (12.39)

84.25 (14.42)
75.89 (0.68)
41.97 (21.55)

0.29 (0.42)
0.00 (0.00)
0.17 (0.19)

55.72 (4.18)
25.29 (4.97)
30.84 (9.26)

Table 1: Metrics of the best final levels, derived from simulations with procedural per-
sonas. Each level is simulated 10 times, and the value in the table represents the average
of those 10 simulations, averaged again across the 20 independent runs of the GA. The
value in parentheses represents the standard deviation of that metric within the 10 simu-
lations (on the same level), and is also averaged across the 20 runs of the GA. Included
are the gameplay metrics of the authored levels of Fig. 1: the values are averaged from
10 simulations, with deviation between simulations (on the same level) in parentheses.

of D)k is a direct result of the fitness computation: the most straightforward way to
achieve a larger deviation in monster kills is by dying prematurely. This is achieved in
the map design by “hiding” potions behind multiple monsters, whereas maps evolved
towards Fysx allow the hero to heal at any time (see Fig. 3). Comparing between levels
evolved towards Frro and Dpc, it is obvious that the former present minimal challenge
to the Treasure Collector persona: with Frr¢, all 7 rewards are always collected — with-
out the hero ever dying — in every simulation and in every best final level. In contrast,
with Dp¢ the hero collects less treasure with a high deviation in treasure collected be-
tween playthroughs, and has some chance of dying. Interestingly, the chance that the
Treasure Collector dies is lower for maps evolved towards Dr¢ than for authored maps
on which it was evolved; this is different than with maps evolved towards D s x, where
the death ratio is higher than for authored maps. Observing the Treasure Collector’s ac-
tions in maps evolved for D¢, its cautious tactics (compared to the Monster Killer) led
it to rush to the exit when at low HP, since unguarded treasures were rarely available.

5 Discussion

The experiments in Section 4 demonstrated the impact of the FI-2pop GA in the swift
and reliable discovery of playable Minidungeons levels. Moreover, the influence of the
persona-critic was shown in the evolved dungeons’ design patterns: levels evolved ac-
cording to a Monster Killer had many unguarded potions while levels evolved accord-
ing to a Treasure collector had many unguarded treasures. However, optimizing for
most monsters killed or treasures collected resulted in Minidungeons levels of limited
interest, especially for F'ro where there was no risk of dying when collecting all trea-
sure. In contrast, maps evolved towards deviations between monsters killed (D) or
treasures collected (Dp¢) featured a higher chance of dying for either persona, and
therefore interesting risk/reward decisions. Maps evolved towards either D ;i or D¢
are superficially similar, as both fitnesses result in levels with more monsters guarding

potions and treasure; the difference in gameplay metrics, therefore, is introduced by
the different decisions and utility functions of the personas playtesting them. It may
be worthwhile in future work to explore the potential of evolving maps based on how
different the playthroughs between these two personas are.

However, the design patterns of evolved levels were biased by the personas’ archi-
tecture as well as the levels that they were evolved on. Using two inputs for estimat-
ing the utility of treasure (closest treasure and closest unguarded treasure) works well
for the authored levels the personas were evolved on (which had several unguarded
treasures) but fell short when all treasures were guarded e.g. in Fig. 3d. Additionally,
following a strategy such as “collect closest treasure” should avoid monsters when pos-
sible by using more sophisticated planning approaches than the ones currently in place.
Finally, future work can explore how dungeons can be evolved according to personas
with more elaborate utilities (e.g. a completionist persona targeting both monsters and
treasure), or according to clones of human players, i.e. artificial agents evolved to match
the decisions of a specific human player [15], thus providing personalized dungeons.

The algorithms covered in this paper can be applied to any problem that includes
search in constrained spaces using simulations to evaluate content quality. Within games,
procedurally generated content usually has to satisfy certain constraints; such con-
straints can be tested via planning [16], ensuring that a “perfect” or “worst-case” player
can finish the game. However, in games with high stochasticity (e.g. roguelike games),
with emerging tactics (e.g. multi-player strategy games) or where players don’t always
play optimally (e.g. sandbox games), simulations using one or more artificial agents
to test the game can be useful both for playability checks (assuming more human-like
perception, cognitive load and response times) and for evaluating the quality of com-
pleted playthroughs. Beyond games, constrained optimization is extensively applied in
evolutionary industrial design [17] where simulations are often used to test robot loco-
motion or the performance of a machine part. The results of these simulations can act as
constraints (e.g. minimal distance covered by a robot or lifetime of a machine part) in
order to divide the search space into feasible and infeasible, allowing the FI-2pop GA
to explore it using simulation-based fitnesses on the feasible and infeasible population.

6 Conclusion

This paper described a method for using procedural personas to evaluate the playa-
bility and quality of generated levels for the MiniDungeons game. Playability is de-
termined by a “baseline” persona playing through a worst-case scenario of the level,
with monsters dealing maximum damage. Using a two-population genetic algorithm
to distinguish between feasible and infeasible content, discovery of playable levels is
fast and reliable despite the highly constrained search space. To test the level’s quality,
a procedural persona simulates multiple playthroughs: a good level may require that
the persona maximizes its utility or that the decisions taken by the persona affect its
utility significantly. This paper tested two procedural personas, the Monster Killer and
the Treasure Collector, and the final evolved levels demonstrated different map designs
appropriate for each. Future work aims to improve the persona-critics, explore other
simulation-based level evaluations, and increase the complexity of MiniDungeons.

Acknowledgements

The research was supported, in part, by the FP7 ICT project C2Learn (project no:
318480) and by the FP7 Marie Curie CIG project AutoGameDesign (project no: 630665).

References

1.

2.

11.
12.

13.

14.
15.

17.

van der Linden, R., Lopes, R., Bidarra, R.: Procedural generation of dungeons. IEEE Trans-
actions on Computational Intelligence and Al in Games 6(1) (2013) 78 — 89

Roden, T., Parberry, 1.: From artistry to automation: a structured methodology for proce-
dural content creation. In: Proceedings of the International Conference on Entertainment
Computing. (2004) 151-156

. Dormans, J.: Adventures in level design: generating missions and spaces for action adventure

games. In: Workshop on Procedural Content Generation in Games. (2010)

. Hartsook, K., Zook, A., Das, S., Riedl, M.: Toward supporting stories with procedurally gen-

erated game worlds. In: Proceedings of the IEEE Conference on Computational Intelligence
and Games. (2011) 297-304

. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural content

generation: A taxonomy and survey. IEEE Transactions on Computational Intelligence and
Al in Games 3(3) (2011) 172-186

. Holmgard, C., Liapis, A., Togelius, J., Yannakakis, G.N.: Evolving personas for player deci-

sion modeling. In: Proceedings of the IEEE Conference on Computational Intelligence and
Games. (2014)

. Kimbrough, S.O., Koehler, G.J., Lu, M., Wood, D.H.: On a feasible-infeasible two-

population (fi-2pop) genetic algorithm for constrained optimization: Distance tracing and
no free lunch. European Journal of Operational Research 190(2) (2008) 310-327

. Holmgard, C., Liapis, A., Togelius, J., Yannakakis, G.N.: Generative agents for player deci-

sion modeling in games. In: Poster Proceedings of the 9th Conference on the Foundations of
Digital Games. (2014)

. Liapis, A., Yannakakis, G., Togelius, J.: Sentient sketchbook: Computer-aided game level

authoring. In: Proceedings of the ACM Conference on Foundations of Digital Games. (2013)

. Kahneman, D., Tversky, A.: Prospect theory: An analysis of decision under risk. Economet-

rica: Journal of the Econometric Society 47 (1979) 263-291

Gibson, J.J.: The theory of affordances. Perceiving, Acting, and Knowing (1977) 67-82
Liapis, A., Yannakakis, G.N., Togelius, J.: Towards a generic method of evaluating game lev-
els. In: Proceedings of the AAAI Artificial Intelligence for Interactive Digital Entertainment
Conference. (2013)

Liapis, A., Yannakakis, G.N., Togelius, J.: Generating map sketches for strategy games. In:
Proceedings of Applications of Evolutionary Computation. Volume 7835, LNCS., Springer
(2013) 264-273

Bjork, S., Holopainen, J.: Patterns in Game Design. Charles River Media (2004)

Holmgard, C., Liapis, A., Togelius, J., Yannakakis, G.N.: Personas versus clones for player
decision modeling. In: Proceedings of the International Conference on Entertainment Com-
puting. (2014)

. Horswill, L., Foged, L.: Fast procedural level population with playability constraints. In:

Proceedings of the Artificial Intelligence and Interactive Digital Entertainment Conference.
(2012)

Michalewicz, Z., Dasgupta, D., Le Riche, R., Schoenauer, M.: Evolutionary algorithms for
constrained engineering problems. Computers & Industrial Engineering Journal 30 (1996)
851-870

