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Abstract—Quality diversity is a recent family of evolution-
ary search algorithms which focus on finding several well-
performing (quality) yet different (diversity) solutions with the
aim to maintain an appropriate balance between divergence and
convergence during search. While quality diversity has already
delivered promising results in complex problems, the capacity of
divergent search variants for quality diversity remains largely
unexplored. Inspired by the notion of surprise as an effective
driver of divergent search and its orthogonal nature to novelty
this paper investigates the impact of the former to quality
diversity performance. For that purpose we introduce three
new quality diversity algorithms which employ surprise as a
diversity measure, either on its own or combined with novelty,
and compare their performance against novelty search with local
competition, the state of the art quality diversity algorithm.
The algorithms are tested in a robot navigation task across
60 highly deceptive mazes. Our findings suggest that allowing
surprise and novelty to operate synergistically for divergence and
in combination with local competition leads to quality diversity
algorithms of significantly higher efficiency, speed and robustness.

Index Terms—Surprise search, novelty search, quality diver-
sity, local competition, maze navigation, NEAT.

I. INTRODUCTION

QUALITY diversity algorithms have been recently intro-
duced to the evolutionary computation (EC) literature

as a way of handling deceptive search spaces. The goal of
these algorithms is “to find a maximally diverse collection of
individuals (with respect to a space of possible behaviors) in
which each member is as high performing as possible” [1].
As highlighted in [1], the inspiration for such approaches
is natural evolution which is primarily open-ended—unlike
the objective-based optimization tasks to which EC is often
applied. While the rationale of open-ended evolution has been
previously used as an argument for genetic search for pure be-
havioral novelty [2], quality diversity algorithms re-introduce a
notion of (localized) quality among individuals with the same
behavioral characteristics. In the natural evolution analogy,
quality diversity would be similar to a competition among
creatures with the same behavioral traits1. For instance, small
flying animals (bats, birds) compete for the same food supply,
but do not compete with large terrestrial herbivores.

Quality diversity (QD) algorithms attempt to balance be-
tween their individuals’ quality and their population’s di-
versity. Quality can be assessed via an objective function,
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1Since diversity refers to behavioral niches, notions such as species may
refer to genotypic similarities and are not used in this paper to avoid confusion.
To make matters more complex, the term speciation [3] in EC similarly
operates on the genotype rather than the phenotype of individuals.

assuming a problem space where this is possible to compute.
Diversity, on the other hand, can been assessed in different
ways: for instance, MAP-elites [4] compartmentalizes the
search space beforehand based on two or more behavioral
characterizations, while novelty search with local competition
[1], [5] pushes for novelty as a second objective. Novelty in
this algorithm is assessed as the distance from the behaviorally
closest neighbors in the current population and in an archive
of past novel individuals. In that sense, novelty is the deviation
from current and past solutions. In natural evolution, the
novelty of a behavioral trait such as flying, coupled with a
competitive advantage (such as the improved flying ability of
Archaeopteryx against flying reptiles of the same period) can
lead to large shifts as these behaviors become dominant.

Novelty, however, faces a number of limitations as a mea-
sure of diversity; in particular, it lacks a temporal dimension
in terms of the trends that evolution is following from one
generation to the next. Towards that end, surprise has been
introduced as an alternative to novelty for divergent search
[6], [7]. Unlike novelty, surprise accounts for behavioral
trends in recent generations and uses them to predict future
behaviors: if a new individual breaks those expectations, then
its behavior is surprising and the individual is favored for
evolution. While surprise is tied to human emotions [8], in
the context of EC it is more broadly defined as deviation
from expected behaviors. Based on that definition, surprise
can be considered both orthogonal and complementary to
novelty: the latter deviates from past behaviors, while the
former deviates from predicted future behaviors. Both novelty
and surprise have been applied as measures of divergence in
EC, through novelty search [2], [9] and surprise search [7]
respectively. Both of these algorithms perform pure divergent
search which has been shown to outperform objective search
in deceptive environments such as maze navigation [7], [10],
creature locomotion [2], [11], or game content generation [12],
[13]. Moreover, experiments have shown that surprise search
discovers different niches of the search space than novelty
search [11], [13] and often results in more efficient and more
robust evolutionary runs in more deceptive tasks [7].

Drawing an evolutionary analogy for novelty search and
surprise search, one may view those processes through the
lens of phylogenetics [14]; the study of the evolutionary history
and relationships among organisms. Both algorithms may rep-
resent evolutionary lineages that operate synergistically on the
behavioral (rather than on the genetic) space of a phylogenetic
tree. While both processes can be seen as behavioral lineages
of evolution, on the one hand novelty search rewards diversity
by aggregating the entire evolutionary history into a novelty
archive, on the other hand surprise search considers the recent
historical trends to make predictions about the future and
deviate from them. Drawing again from natural evolution in
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paleontology, the shift towards smaller, flying dinosaurs in the
Cretaceous period [15] pointed to a trend towards ever-smaller
fliers, as evident in most birds in following epochs: such birds
would not be deemed surprising. On the other hand, some birds
evolved into man-sized flightless bipedal predators [16] (“ter-
ror birds”): this breaks expectations and phenetic tendencies,
therefore terror birds are deemed surprising. However, terror
birds are not behaviorally novel since similar-sized bipedal
predators abounded in earlier periods (i.e., most carnivorous
dinosaurs) [17].

With the theoretical argument for the orthogonal nature
of novelty and surprise [6] and the promising results of the
latter for divergent search [7], [18], this paper introduces three
new quality diversity algorithms relying on surprise. Inspired
by novelty search with local competition (NS-LC), the new
algorithms replace novelty search with surprise search (SS-
LC), or combine measures of novelty and surprise linearly
(NSS-LC) or as separate objectives (NS-SS-LC). We compare
the performance of these algorithms in solving robot nav-
igation tasks across 60 different generated mazes in which
controllers of wheeled robots are evolved via neuroevolution
of augmenting topologies (NEAT) [3]. Our key results in
this domain showcase that NSS-LC is far more robust and
efficient than any other QD algorithm it is tested against, as
it is able to find more solutions in more mazes and in fewer
evaluations. Our findings suggest that introducing surprise to
QD algorithms creates a new type of search that is more
efficient, at least in the domain tested. The capacity of the
NSS-LC algorithm seems to be due to the ability of surprise
search to back-track, revisiting parts of the search space. Such
a characteristic, combined with NS-LC, seems to yield a better
balance between seeking greedily for entirely novel solutions
and seeking for highly fit solutions locally.

A. Novelty of this Paper

This paper is novel in a number of ways. First, this is the
first time that surprise search is used within a quality diver-
sity algorithm. Second, the paper introduces three new QD
algorithms with local competition, replacing novelty search
with surprise search, or combining the two via aggregation
or multiobjectivation. Third, the introduced algorithms—and
all other baseline algorithms examined—are evaluated and
compared comprehensively across 60 procedurally generated
mazes of varying complexity and degrees of deceptiveness;
this offers a broad assessment of their capacity, efficiency and
robustness in this domain. Importantly, by procedurally gener-
ating the environments in which evolutionary (reinforcement)
learning is tested we ultimately evaluate the generality of the
algorithms’ performance within the domain considered [19].
Earlier studies with novelty search [2], [9], surprise search [7],
[20] and NS-LC [1] in maze navigation focus merely on a few
(up to 4) ad-hoc designed mazes. By necessity, the few mazes
examined in such work represent certain aspects of the domain,
limiting the generalizability of the findings. To the best of our
knowledge, the only study that goes beyond a predefined set
of mazes in the one by Lehman et al. [21] in which novelty
search is compared against objective search in 360 maze-like

environments; that early study however does not consider other
forms of search (and QD algorithms in particular) for purposes
of comparison. Fourth, no earlier study in divergent search
and QD research has evaluated algorithms to the extensive
degree we do in this paper. Our comparative analysis is
comprehensive in depth—i.e., each algorithm is evaluated and
compared across a minimum of 3000 evolutionary runs in
total—and in breadth—i.e., our three introduced algorithms
are compared against 6 other benchmark algorithms. The
only other example is [21] which performed a total of 3600
evolutionary trials per algorithm, but only compared novelty
search with objective search and random search; no other
study has compared divergent search and QD algorithms to
this degree. Finally, to the best of our knowledge this is
the first study in which several QD algorithms are compared
extensively for both their efficiency and robustness in maze
navigation [1], [22], while a number of algorithmic variants
are also tested to determine the impact of different parameters
and components of the proposed QD algorithms.

In summary, the core contribution of this paper is in the
introduction of surprise as a mechanism for quality diversity
in the form of three different algorithms, out of which one
outperforms the state of the art. While the generality and extent
to which we evaluate the algorithms are not an innovation per
se they consist a decisive step towards establishing a method-
ology for evaluating QD algorithms based on procedurally
generated content as well as providing an open-source testbed
for QD algorithms. The large number of runs and the extensive
comparisons with baselines and variations of the algorithms
proposed similarly enhance the validity and generality of our
findings. Further, the modular way algorithms are compared
in this paper and the measures they are compared against
(i.e., efficiency and robustness) collectively offer a holistic
perspective on the algorithmic aspects that are responsible for
any positive performance gain.

II. RELATED WORK

This section reviews work on divergence and quality diver-
sity. Section II-A discusses why divergent search has been
introduced for handling deceptive problems, while Section
II-B describes the notion of quality diversity and the challenge
of finding diverse and high-performing solutions.

A. Divergence

Divergence is a recent alternative in the context of EC
that shifts from rewarding individuals fittest in terms of the
objective (convergence) to pushing for diversity (divergence).
As exploration of the search space progresses, rewarding
diversity may lead to the right stepping stones towards the
optimal solution without being attracted by the presence of
suboptimal solutions (e.g., premature convergence to local
optima). The problem of a greedy hill-climbing approach
towards one objective that leads search away from a global
optimum is neither new nor unique to evolutionary computa-
tion. However, the notion of deception in the context of EC
was introduced by Goldberg [23] to describe instances where
highly-fit building blocks, when recombined, may guide search
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away from the global optimum. Similarly, the global optimum
may be “surrounded by” (or composed of) genetic information
that is deemed unfit. While this unfit information can be a
vital stepping stone towards attaining the global optimum, it
nevertheless may be ignored in favor of solutions which are
fitter in the short term.

Several solutions have been proposed in the literature to
counter deception, from diversity maintenance techniques such
as niching [24] and speciation [3] to multi-objective solutions.
In multimodal optimization, for instance, the niching algorithm
NEA2 [25] uses nearest-better clustering to spread several
parallel populations over the multiple local optima that are
present in the fitness landscape. However, in [26], it is argued
that in perversely deceptive problems, such as maze naviga-
tion and biped robot locomotion, genotypic diversity is not
sufficient, as all the possible “good” innovation steps towards
the global optimum are punished by the optimization process.
Divergent search tackles the problem directly by rewarding
diversity at the phenotypical level, and a shift of paradigm is
proposed where rewarding behavioral diversity becomes the
predominant driver of evolution.

It is argued that divergence, therefore, can tackle the prob-
lem of a deceptive fitness landscape or a deceptive fitness
characterization by awarding diverse behaviors [2] which may
eventually lead to optimal results. As a popular example of
divergent search methods, novelty search [2] is inspired by
open-ended evolution and rewards behaviors that have not
been seen previously during search. Inspired by the notion of
self-surprise for unconventional discovery, surprise search [6]
instead rewards unexpected behaviors based on past behavioral
trends observed during search. As discussed in Section I,
novelty and surprise are conceptually orthogonal: the former
looks to the past to assess whether a solution is actually new
while the latter looks to the (near) past to find trends that are
expected to carry on in the (near) future and assesses whether a
solution breaks these expectations. Novelty search and surprise
search as EC methods are also shown to explore the search
space in different ways [7] and find different solutions (in
terms of both behavior and genotype) to the same problem.
The orthogonal nature of surprise and novelty is evidenced by
the fact that combining the two in a search algorithm results
in improved robustness and efficiency compared to novelty
search or surprise search on their own in deceptive tasks [20].

B. Quality Diversity

While diversity alone can be beneficial to discover the
optimal solution of a deceptive problem, for particular search
spaces this is not enough. When the search space is boundless
or when the diversity measure is completely uncorrelated
to desired behaviors, some push towards quality is needed.
Several solutions have been proposed to solve this issue,
such as Novelty Multiobjectivation [9] or constrained novelty
search [27], [28]. However, a more aligned combination of
divergence and convergence might enable evolutionary search
to discover high-performing and diverse solutions in the same
run. Inspiration for handling this problem is again found in
nature. Natural evolution has discovered an impressive number

of diverse solutions (i.e., organisms) that can adapt to different
conditions and constraints. If we take for example the problem
of moving, nature has evolved different ways to ambulate:
crawling, swimming, walking, etc. Moreover, an organism can
be composed of different legs. It becomes apparent that each
configuration of the above can lead to an effective yet different
solution to movement.

Inspired by the richness of solutions found in nature, Pugh
et al. [1], [29] have proposed the quality diversity challenge.
The main purpose of quality diversity is the discovery of
multiple and diverse good solutions at the same time. Notable
examples of QD algorithms include novelty search with local
competition [5] and MAP-Elites [4] which explore ways to
combine the search for quality (within the locality of the
solution’s space) with the search for the diversity of solutions.

The quality diversity paradigm has been inspired by the idea
of solving single-objective optimization problems via multi-
objective optimization (MOO). Such approaches have been
successfully applied to different problems in the literature. For
instance, [30] proposes using MOO to optimize two conflicting
objectives, the reconstruction error and the sparsity of deep
artificial neural networks. In [31], multi-objective self-paced
learning decomposes a hard problem into simpler problems
which can be optimized in a more accessible way. In [32], a
multi-objective approach is proposed for ensemble learning to
obtain the best performance with the fewest learners. In [33],
feature selection is performed through evolutionary Pareto
optimization to select the best possible subset of features for a
deep neural network (feature learning). Finally, in [34] MOO
is used for influence maximization in a constrained scenario.
We argue that a QD algorithm will discover more highly-fit
solutions if we extend the divergence pressure across multiple
and orthogonal dimensions beyond novelty—such as surprise.
Following this view, we introduce three algorithms that explore
how both surprise and a combination of novelty and surprise
might help to cover the solution space more advantageously.

III. ALGORITHMS

This section reviews work on EC algorithms targeting
divergence and quality diversity, and introduces three novel
approaches in the quality diversity field.

A. Background Algorithms

This section discusses algorithms used for comparative
purposes and algorithms which are enhanced in this paper. We
first present two implementations of divergent search: novelty
search and surprise search. Finally, we describe an established
QD algorithm, novelty search with local competition.

1) Novelty Search: Novelty search [2] is the first divergent
search algorithm that has been proposed with demonstrated
effectiveness in domains such as maze navigation and robot
control [2], image generation [35] and game content generation
[28], [36]. Novelty search ignores the objective of the problem
at hand, and attempts to maximize behavioral diversity in
terms of a novelty score. The novelty score is computed
through Eq. (1), i.e., the average distance with the nNS closest
individuals in the current population or an archive of novel
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solutions. In every generation, individuals with a novelty score
above a fluctuating threshold (parameter ρ) are added to a
novelty archive which persists throughout the evolutionary run.
The distance dn, which is used to assess the novelty score as
well as what constitutes an individual’s closest neighbors, is
based on the difference of behaviors (rather than genotypes)
between individuals. This allows novelty search to explore a
diverse set of behaviors without explicitly favoring behaviors
closer to the desired behavior, i.e., the solution of a problem.

n(i) =
1

nNS

nNS∑
j=0

dn(i, µj), (1)

where dn is the behavioral distance between two individuals
and depends on the domain under consideration (e.g., the
Euclidean distance between two robots’ final positions in a
maze navigation task), µj is the j-th nearest neighbor and n(i)
is the novelty score for the individual i. The current population
and the novelty archive are used to find the nearest neighbors.

2) Surprise Search: Surprise search is a recent divergent
search algorithm [6] which has demonstrated its effectiveness
and robustness in domains as diverse as maze navigation
[7], [37], robot morphology evolution [11] and procedural
content generation [13]. Surprise search is built on the novelty
search paradigm, but instead of deviating from past and current
behaviors (in the novelty archive or the current population,
respectively) it attempts to deviate from predicted behaviors
based on recent trends. Inspired by the way humans experience
surprise, the algorithm operates on the definition of surprise as
“deviation from the expected”. Unlike novelty, surprise hinges
on a sequence of patterns and their temporal order: the same
artifact such as a green circle could be perceived as non-
surprising if the last produced shape was green and curvy,
but it would be surprising if past produced shapes alternated
between blue circles and green squares [6].

Surprise search requires two components: a prediction
model and a deviation model. The prediction model uses past
behaviors to estimate future behaviors. More specifically, the
prediction model is derived from a selected number of past
generations g (parameter h as history length) and their locality
in the behavioral space (behavior vector bg of size kSS).
Through this model m summarized in Eq. (2), a number of
predictions (vector p of size kSS) are made based on past
trends for the expected behaviors in the current population.
Once predictions are made, the deviation model rewards each
individual in the current population based on its distance
from the nSS closest predictions as per Eq. (3). As with
novelty search, the distance ds used in the deviation model is
based on the difference in behaviors; similarly, the prediction
model creates expectations in terms of behavior. This two-
step mechanism favors individuals that diverge from predicted
future trends; it should be noted that based on m, h and kSS

parameters, the predictions could be infeasible or unreachable
by conventional search (e.g., points outside a maze that should
be traversed). More details on surprise search can be found in
[6], [7], [37].

p = m(h, kSS) (2)

s(i) =
1

nSS

nSS∑
j=0

ds(i, pi,j), (3)

where s(i) is the surprise score of individual i, and ds is the
behavioral distance of i from its n closest predictions (pi,j).

3) Novelty Search with Local Competition: Considered to
be the first QD algorithm, novelty search with local com-
petition [5] is an algorithm that combines the divergence
of novelty search with the localized convergence obtained
through a local competition. In NS-LC, a multi-objective al-
gorithm, NSGA-II [38], searches for non-dominated solutions
across two dimensions: novelty and local competition. Novelty
attempts to maximize a novelty score computed in Eq. (1),
i.e., the average distance of the individual’s behavior with the
behavior of the closest neighbors in the current generation
or the novelty archive. Local competition is also calculated
based on the closest individuals in the current generation and
the novelty archive. The reward for local competition lc(i) is
proportional to the number of solutions outperformed in terms
of the objective function f . This creates a pressure towards
those solutions that are good within their (behavioral) niche,
even if they globally underperform compared to the general
population. Combining novelty search and local competition
allows NS-LC to pursue and optimize many different behaviors
in the hope that one of these directions will eventually lead
to globally optimal solutions. NS-LC has shown performance
advantages over novelty search in the domains of maze navi-
gation [1], [29] and robot evolution [5], [22].

B. Surprise for Quality Diversity

Quality diversity algorithms are designed to couple di-
vergence with pressure for a local measure of quality. In-
spired by previous work on divergent search for surprise
[20], [37], we propose three new algorithms that introduce
surprise search as an alternative divergent search mechanism
with local competition for quality diversity [5]. These three
algorithms are named surprise search with local competition
(SS-LC), novelty-surprise search with local competition (NSS-
LC), and the three-objective novelty search-surprise search-
local competition (NS-SS-LC).

Fig. 1 offers a high-level overview of the three algorithms
used for surprise-based QD. The algorithms initially generate a
population (Pop) of N individuals and then initialize a novelty
archive (A). Then an initial update of the surprise model is
performed (right part of Fig. 1; this phase is described in
detail below) and each individual in the population is evaluated
according to the selected algorithm (i.e., NSS-LC, SS-LC
or NS-SS-LC). Right before entering the main loop of the
algorithm, non-dominated sorting divides the population into
fronts based on the NSGA-II algorithm. While the termination
criterion is not met (e.g., high performance is reached) a
steady-state evolutionary algorithm is executed (see left part
of Fig. 1): two mating parents are selected to generate a new
offspring, which is evaluated based on the algorithm chosen
(i.e., NSS-LC, SS-LC or NS-SS-LC); the worst individual
of the population is then replaced by the newly generated
offspring if the offspring is more fit. At the end of each
steady state step of the algorithm, the non-dominated fronts are
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Fig. 1. Surprise-based Quality Diversity. The flow chart illustrates a high level representation of the three introduced QD algorithms: SS-LC, NSS-LC, NS-
SS-LC. All algorithms are based on a steady state evolutionary algorithm framework (left flow chart). The model of surprise is initialized after the generation
of the initial population and then updated every N offspring generations (right flow chart). The evaluation of individuals (middle flow chart) goes through
the calculation of local competition, novelty, and surprise scores before those are assigned to the corresponding algorithm. The introduced surprise-based
components and novelty-surprise components of the algorithm are depicted in grey boxes and in black boxes respectively. References are made to parts of
existing divergent search and QD algorithms, as well as corresponding equations and sections in this paper.

updated as in [39]. Every N offspring generations, we update
the surprise model (see right part of Fig. 1) by computing the
kSS behavioral clusters and then computing the predictions
based on the surprise predictive model m. We then re-evaluate
the entire population and recompute the non-dominated fronts.
The algorithm returns to the main steady state loop until either
N new offspring are generated or the termination condition is
reached. A key part of the framework is its evaluation step
(see middle flow chart in Fig. 1): it involves the computation
of novelty, surprise, novelty-surprise and local competition
scores. Based on the algorithm chosen, we assign the selected
scores to the individual which will influence the replacement
strategy and the non-dominated sorting performed by the
NSGA-II algorithm. The details of each of the three algorithms
are described in the subsections below, whereas their domain-
specific implementation is further elaborated in Section IV-B.

1) Surprise Search with Local Competition: As a direct
integration of surprise search for quality diversity, the obvious
approach is to replace novelty with surprise in the NS-LC [5]
paradigm. In surprise search with local competition (SS-LC),
NSGA-II [38] searches for non-dominated solutions on the di-
mensions of local competition and surprise. Local competition
is calculated based on the superiority of the individual being
evaluated among its closest neighbors. What constitutes a
nearby neighbor for local competition is based on a behavioral
characterization (dSS in this case), rather than a genotypic one.
Superiority is established based on a measure of proximity to
an ideal solution: the number of neighbors who are worse than
the current individual is used as the local competition score
to be optimized. Borrowing from local competition as applied
in NS-LC, the closest neighbors are drawn from the current
population. Unlike NS-LC, however, SS-LC does not maintain
a novelty archive and only considers neighbors in the current
population. The surprise dimension uses the surprise score of
eq. (3), which assesses how much the behavior of an individual
deviates from expected behaviors based on trends in recent

generations. As described in Section III-A2, the surprise score
is calculated based on a two-step process: first, Eq. (2) creates
predictions based on past generations’ dominant behaviors,
and then Eq. (3) calculates the surprise score based on the
distance from predicted behaviors.

2) Novelty-Surprise Search with Local Competition: Given
the orthogonal nature of novelty and surprise, we hypothesize
that combining novelty and surprise as different measures of
divergence would be valuable for QD. Earlier work has shown
that a weighted sum of the surprise score and the novelty score
can outperform novelty search alone [20]. We thus expect that
combining both surprise and novelty as measures of divergence
with local competition can only improve the performance of
the state of the art QD algorithm.

In the novelty-surprise search with local competition (NSS-
LC) algorithm, as we name it, NSGA-II [38] searches for non-
dominated solutions on the dimensions of local competition
and a weighted sum combining novelty and surprise. Local
competition measures the number of closest neighbors (in
terms of behavior) which underperform compared to the cur-
rent individual. Unlike SS-LC, local competition considers the
novelty archive maintained by the novelty search component
and thus the closest neighbors considered for local competition
can be from both the current population and the novelty
archive. The other dimension targeted by NSGA-II combines
the novelty score of Eq. (1) and the surprise score of Eq. (3)
in the weighted sum of Eq. (4), where a single parameter (λ)
influences both scores.

ns(i) = λ · n(i) + (1− λ) · s(i), (4)

where ns(i) is the combined novelty and surprise score of
individual i and λ ∈ [0, 1] is a parameter that controls the
relative importance of novelty versus surprise, n(i) is the
novelty score (Eq. 1) and s(i) is the surprise score (Eq. 3).

3) Novelty Search–Surprise Search–Local Competition: As
an alternative way to combine novelty search and surprise
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search in the divergence dimension of a QD algorithm, we
can consider them as independent objectives rather than ag-
gregating them as with NSS-LC. The three-objective algorithm
Novelty Search–Surprise Search–Local Competition (NS-SS-
LC) uses NSGA-II [38] to search for non-dominated solutions
on the three dimensions: the local competition score, the
surprise score (as in Eq. 3) and the novelty score (as in Eq. 1).

IV. MAZE NAVIGATION TESTBED

One of the most popular testbeds for divergent search and
quality diversity algorithms is the maze navigation problem.
First proposed in [2], the maze navigation problem has several
properties that make it suitable for testing QD algorithms and,
hence, our hypothesis. This section first describes the robotic
controller which performs the maze navigation task, along with
details of the neuroevolutionary approaches for evolving the
controller. The remainder of this section describes an algorithm
for generating deceptive mazes for the controller to navigate,
the criteria for deceptiveness in selecting the mazes and the
final set of mazes on which all algorithms are tested.

A. Robot Controller

The problem of maze navigation can be simply formulated
as follows: a robot starting at a specific position in the
maze must reach the goal position in a maze using local
(incomplete) information. The robot is equipped with six
range finder sensors which indicate the distance from the
closest wall and four pie-slice sensors broadly indicating the
direction of the goal. During simulation, the sensors’ data
is provided as input to an artificial neural network (ANN)
which controls the movement of the robot, i.e., its velocity and
turning angle as two outputs. As per the problem formulation,
the de facto objective is to reach the goal position, and the
most intuitive objective/fitness function is to select individuals
based on their Euclidean distance from the goal—ignoring the
presence of walls. The fact that the maze topology is not
known in advance (local information) results in a deceptive
fitness landscape as the robot may end up in a dead-end
which is locally optimal but is unable to bring the robot
any closer to the goal. In order to find the goal, in most
cases the robot must go through areas of lower fitness before
the goal becomes accessible. Deceptive mazes are easy to
identify visually, as they feature dead ends along the direct
line between starting and goal position. However, deceptive
mazes are challenging to identify computationally; we discuss
this in Section IV-C. Beyond a visually interpretable search
space, which largely coincides with the physical space of the
maze, an additional property of this testbed is the relatively
lightweight simulations it affords; this allows extensive tests
to be run, featuring evolutionary runs with large population
sizes and multiple re-runs. Indicatively, this paper performs 50
independent evolutionary runs per maze (or more, considering
a sensitivity analysis), and tests 60 mazes in this fashion.
Such a computational burden is prohibiting in more complex
simulations such as evolving robot morphologies [5], [11] or
generating game content and testing it in games [13], [40].

As with the original implementation of the maze navigation
testbed [2], the ANN of the robot controller is optimized
through neuroevolution of augmenting topologies [3] (NEAT).
NEAT starts with an initial population of simple networks and
progressively increases their complexity by adding nodes and
edges. NEAT ensures genotypic diversity through speciation,
which groups networks with similar topologies into species. In
this paper, genetic operators, mutation chances and speciation
parameters are identical to those reported in [2]; parameters
of novelty search are described in Section V.

B. Algorithms for Maze Navigation

This section describes the implementation details of the
algorithms which are compared in Section V to test our
hypothesis that surprise search enriches the capacity of QD.
The source code of the described framework is available
online2. It is based on the source code of the original novelty
search implementation for maze navigation [2] and implements
all the algorithms described in this work.

1) Objective Search: As an indication of how deceptive
landscapes can hinder traditional EC approaches, objective
search is used as a baseline for selecting among generated
mazes in Section IV-C. As per [2], the objective f is to
minimize the Euclidean distance between the goal in the
maze and the robot’s final position at the end of simulation.
Objective search never finds a solution in any of the mazes
used in the experiments of Section V, so its results are omitted.

2) Novelty Search: As discussed in Section III-A1, novelty
search ignores the objective of the problem at hand and
attempts to maximize behavioral diversity. The novelty score,
computed through Eq. (1), uses the behavioral distance dn
between two individuals; in this domain dn is the Euclidean
distance between the two robots’ final positions at the end
of simulation. The same distance is used to identify closest
neighbors (µj). Finally, in all novelty search experiments in
this paper we follow the literature and consider the 15 closest
individuals as our nNS parameter [5].

3) Novelty Search with Local Competition: As discussed
in Section III-A3, novelty search with local competition com-
bines the divergence of novelty search with the localized
convergence obtained through a local competition [5]. In this
paper, NS-LC uses a steady-state NSGA-II multi-objective
algorithm [39] to find non-dominated solutions on two di-
mensions: novelty and local competition. Novelty attempts
to maximize a novelty score computed in Eq. (1), using the
Euclidean distance between the two robots’ final positions
at the end of simulation for calculating distance from the
closest individuals. As with novelty search, we are based
on the successful experiments performed in the literature [5]
and consider the nNS = 15 closest individuals in all NS-
LC experiments of this paper. Local competition is calcu-
lated based on the closest individuals (in terms of Euclidean
distance) in the current population and the novelty archive.
In the maze navigation task, local competition counts the
number of neighboring robots with final positions that are
farther from the goal in terms of Euclidean distance. Note

2https://gitlab.com/2factor/QDSurprise
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(a) Generation g − 2 (b) Generation g − 1 (c) Generation g

Fig. 2. The key phases of the surprise search algorithm as applied to the
maze navigation domain. Surprise search uses a history of two generations
(h = 2) and 10 behavioral clusters (kSS = 10) in this example. Robots’
final positions are depicted as empty squares; cluster centroids and prediction
points are depicted as light grey and dark grey circles, respectively.

that unlike earlier work, this paper decouples the number
of individuals considered for the novelty score (nNS) with
the number of individuals used to calculate local competition
(nLC). Section V performs a sensitivity analysis for the best
locality parameter (nLC) of local competition in NS-LC and
the other QD algorithms.

4) Surprise Search with Local Competition: As noted in
Section III-B1, surprise search with local competition (SS-
LC) uses a steady-state NSGA-II multi-objective algorithm
[39] to find non-dominated solutions on two dimensions:
surprise and local competition. Surprise uses the prediction
model of Eq. (2) to make a number of predictions (p) for the
expected behaviors in the current population. The individuals
in the current population are then evaluated based on their
distance from the n closest predictions as per Eq. (3). In this
testbed, predictions are made on the robots’ final position,
and distance refers to the Euclidean distance between two
robots’ final positions at the end of simulation. For deriving
kSS behaviors to predict, k-means clustering is applied on
the robots’ final position in one generation. Based on earlier
research on surprise search and novelty-surprise search on
difficult maze navigation tasks [20], kSS = 200 and nSS = 2
in this paper. The two last generations are used (h = 2)
to cluster behaviors, and predictions are based on a linear
interpolation between cluster centroids in subsequent gener-
ations (Fig. 2 illustrates how behaviors are clustered and how
predictions are computed). More details on the way clustering
is performed and predictions are made for surprise search in
maze navigation can be found in [7], [37].

5) NSS-LC: As noted in Section III-B2, novelty-surprise
search with local competition (NSS-LC) uses a steady-state
NSGA-II multi-objective algorithm [39] to search for non-
dominated solutions on the dimensions of local competition
(computed in the same way as NS-LC) and a weighted sum of
the novelty score and surprise score as in Eq. (4). Parameters
for novelty search are the same as in [5] (i.e., nNS = 15),
while parameters for surprise search are the same as above
(i.e., h = 2, nSS = 2, kSS = 200). Distance characterizations
for NSS-LC are computed as in the other QD algorithms, via
the Euclidean distance between the two robots’ final positions
at the end of simulation. Experiments in Section V-A identify
which values for λ and nLC (the neighbors considered for
local competition) are most appropriate for this testbed.

TABLE I
TEN EASIEST GENERATED MAZES SORTED BY NS-LC SUCCESSES. THE

STARTING POSITION (GREY FILLED CIRCLE) IS AT THE BOTTOM LEFT
CORNER; THE GOAL POSITION (BLACK EMPTY CIRCLE) IS AT THE TOP

RIGHT CORNER. THE THREE NUMBERS UNDER EACH MAZE FROM LEFT TO
RIGHT REPRESENT, RESPECTIVELY, THE NUMBER OF SUBDIVISIONS, THE

A* PATH LENGTH, AND THE NUMBER OF SUCCESSES OF NS-LC.

[8, 453, 50] [8, 332, 40] [6, 362, 32] [6, 391, 22] [8, 364, 17]

[6, 333, 16] [9, 355, 15] [11, 325, 14] [5, 488, 12] [10, 325, 5]

6) NS-SS-LC: As noted in Section III-B3, NS-SS-LC uses
a steady-state NSGA-II multi-objective algorithm [39] to
search for non-dominated solutions on three dimensions: local
competition (computed in the same way as NS-LC), novelty
search, and surprise search. Parameters for novelty search are
the same as in [5] (i.e., nNS = 15), while parameters for
surprise search are the same as above (i.e., h = 2, nSS = 2,
kSS = 200). Distance characterizations for NS-SS-LC are
computed as in the other QD algorithms, via the Euclidean
distance between the two robots’ final positions at the end of
simulation. Experiments in Section V-A identify the best nLC

values for NS-SS-LC in this testbed.

C. Maze Generation

While a substantial portion of research on divergent search
and quality diversity have focused on hand-crafted deceptive
mazes [1], [2], [7], [20], [27], this paper uses a broader set of
mazes to test the QD algorithms of Section IV-B. These mazes
are not crafted by a human designer but generated procedu-
rally; a similar set of generated mazes has been used in [21]
to evaluate the performance of divergent search. Generating
rather than hand-crafting mazes allows for a broader range
of spatial arrangements to be tested, without human curation
towards possibly favorable patterns. Additionally, this paper
uses maze generation to find appropriate deceptive mazes
which satisfy two criteria related to the algorithms tested rather
than inherent structural patterns. These criteria are:

1) Objective search must not find any solutions in 50
evolutionary runs.

2) NS-LC (with parameters as in [5]) must find a solution
in at least one of 50 evolutionary runs.

The first criterion establishes that each maze is deceptive, as
attempting to optimize proximity to the goal does not result
in any solutions. However, the first criterion may be satisfied
by mazes which have extremely long paths from start to finish
which may not be reachable within the alloted simulation time
for each robot. To ensure that the maze is not too difficult (or
practically impossible), the state-of-the-art QD algorithm NS-
LC is used as a second criterion: if “vanilla” NS-LC [5] cannot
find a solution even after numerous retries, then the maze is
characterized as too difficult and is ignored.



8

TABLE II
DISTRIBUTION OF THE 60 SELECTED MAZES AND CORRESPONDING

AVERAGE LENGTH OF THEIR SHORTEST PATH, AS COMPUTED BY A*,
ACROSS THE NUMBER OF SUBDIVISIONS.

Subdivisions 5 6 7 8 9 10 11 12
Number of Mazes 2 9 5 16 13 10 4 1
A* length 403 350 358 353 330 318 323 291

Mazes are generated via a recursive division algorithm [41],
which subdivides the maze (by adding walls at the border)
recursively until no more walls can be added. In this paper,
the algorithm stops after a specific number of subdivisions, or
when adding a new wall would make the path non-traversable.
The start position is always set on the bottom-left corner and
the goal position on the top-right corner. Width of gaps and the
minimum width of corridors is defined in a way that allows the
robot controller to comfortably pass through. All mazes tested
have between 5 and 12 subdivisions (chosen randomly), and
evolution for both objective search and NS-LC is performed
on a population of 250 individuals for a maximum of 600
generations and a simulation time of 300 frames.

Through the above process, more than 800 mazes were
generated and tested but only 60 mazes were found to satisfy
the two criteria. The 60 mazes used in this paper are available
online3 and can be used as an open testbed for quality
diversity algorithms. Details of the 60 mazes’ properties are
described in Table II, including the actual distance between
the start and goal position based on A* pathfinding. It is
immediately obvious that most mazes chosen have between 8
and 10 subdivisions, and that the A* distance decreases as the
subdivisions increase. Indeed, there is a significant (p < 0.01)
negative correlation between the number of subdivisions and
the A* distance (−0.39). This is likely due to the fact that with
more subdivisions the likelihood that a random maze would
not be solvable even by NS-LC increases; for instance due to
narrower corridors and more complex structures. Through an
informal assessment of the many mazes generated, mazes with
fewer subdivisions tend to fail the first criterion while mazes
with more subdivisions tend to fail the second criterion.

While the criterion of at least one success in 50 evolutionary
runs for NS-LC is satisfied in all 60 mazes in our test set, it
is worthwhile to investigate how many successes are actually
scored by NS-LC per maze. The number of evolutionary runs
(out of 50) in which NS-LC finds a solution is indicative of the
hardness of the problem, and will be used in Section V as an
important performance metric for comparing QD algorithms.
Fig. I shows the 10 easiest mazes, where NS-LC found the
most solutions in 50 runs. Among those 10 mazes, the average
number of successes was 22.3 (95% CI = 10.03) while in all
60 mazes this was 5.93 (95% CI = 2.45). More broadly, the
number of successes per maze ranged from 50 out of 50 (in
1 maze) to 1 out of 50 (in 20 mazes). There seems to be a
significant (p < 0.05) correlation between NS-LC successes
and A* path length (0.32). There is a weak negative correlation
between NS-LC successes and number of subdivisions (−0.11)
which is however not significant (p > 0.05).

3https://gitlab.com/2factor/QDMazes

V. EXPERIMENTS

As discussed in Section IV, the maze navigation problem
is used to test four quality diversity algorithms: NS-LC, SS-
LC, NSS-LC and NS-SS-LC. Sixty generated mazes are used
to test each algorithm in 50 evolutionary runs per method
per maze with the same parameters: a population size of 250
individuals, a maximum of 600 generations, and a simulation
time of 300 time steps. The core performance measure we con-
sider is the aggregated number of evaluations per successful
run across all mazes per method. A successful run discovers
one robot that can reach the goal position from the start
position within the 600 generations alloted; when a solution is
found, evolution immediately ends. It is important to mention
that for those methods where multi-objective optimization
is applied (e.g., NS-LC), the final front of solutions is not
considered as a performance indicator. Significance reported
for all experiments in this paper is at a 95% confidence. For
multiple pairwise comparisons the Tukey’s range test is used
to establish significance.

In order to find appropriate values for the many param-
eters in each evolutionary method, a sensitivity analysis is
performed on a subset of mazes and reported in Section V-A.
The best parameters are selected for each algorithm which
in turn are compared on their best setup in Section V-B. Note
that evolutionary runs reported in Section V-A are independent
from those reported in Section V-B.

A. Sensitivity Analysis

Due to a plethora of parameters that may impact the
performance of QD algorithms examined in this paper, we
rely largely on successful parameter values reported in the
literature for the baseline algorithms. However, we perform a
sensitivity analysis along two parameters for which we could
not find suggested values: the locality of local competition
(nLC) in all QD algorithms and the weight of novelty versus
surprise (λ) in NSS-LC. Since most mazes in the test set are
particularly difficult to solve, the impact of a parameter tweak
is not expected to have a strong impact on the algorithm’s per-
formance4. Therefore, the 10 easiest mazes (based on “vanilla”
NS-LC) shown in Fig. I are used for the sensitivity analysis in
this paper. The core performance metric for sensitivity analysis
is the average number of evaluations needed by each algorithm
to discover a controller able to solve the maze. In a run
where no solution was found within the allocated budget, the
maximum allocated evaluations (150·103) is used. This metric
is averaged across 50 evolutionary runs.

Beyond testing the sensitivity of nLC and λ, which we
discuss in Section V-A1, we assess how the various sub-
components of the introduced algorithms (novelty, surprise
and the linear combination of novelty and surprise) affect
algorithmic performance with an additional set of baseline
algorithms described in Section V-A2. Section V-A1 reports
results based on 50 evolutionary runs per maze; Section
V-A2 also reports results based on 50 evolutionary runs per
maze, which are independent from those of Section V-A1.

4For example, in a maze where NS-LC has only one success in 50 runs,
the impact of any parameter is expected to be a product of chance.
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(a) Local competition nLC = 5 (b) Local competition nLC = 10

(c) Local competition nLC = 15 (d) Local competition nLC = 20

Fig. 3. Sensitivity analysis: Average number of evaluations in the 10 easiest
mazes across four local competition sizes (5, 10, 15, 20) and five values of
λ (0.4, 0.5, 0.6, 0.7, 0.8). Error bars denote 95% confidence intervals.

Finally, experiments in Section V-B perform evolutionary runs
independently from either Section V-A1 or V-A2.

1) Sensitivity to Parameters: The parameter setups range
from a nLC value between 5 and 20 (increments of 5) and λ for
NSS-LC between 0.4 and 0.8 (increments of 0.1). The results
of this analysis in terms of average number of evaluations
across all runs in all 10 easiest mazes are shown in Fig. 3.

The results of the sensitivity analysis show that both pa-
rameters have an impact on the performance of both SS-
LC and NSS-LC (where applicable). Notably, however, nLC

seems to have very limited impact on the performance of
NS-LC, with marginally better performance obtained with
nLC = 5. The same parameter impacts SS-LC in a much
more pronounced manner, with nLC = 5 and nLC = 15
giving a far worse performance for SS-LC than other values
tested. The best performance for SS-LC is for nLC = 10,
which however requires more evaluations than NS-LC. NS-
SS-LC tends to fluctuate in the same way as NS-LC, although
it seems to fall behind for nLC = 15. Finally, NSS-LC hinges
on both λ and nLC and it is clear from Fig. 3 that good
performance can be achieved for several combinations of these
two parameters. However, the least evaluations are achieved
with a high λ value (see Table III), in which case the novelty
score contributes more than the surprise score. Based on this
analysis, the parameters for the remaining experiments in this
paper (Sections V-A2 and V-B) are shown in Table III.

2) Sensitivity to Algorithmic Components: Apart from the
many different parameters in the proposed QD algorithms,
there are several design decisions in the implementation of
each. Based on the core components of algorithms considered
(novelty, surprise, local competition), we will compare the four
QD algorithms against novelty search (described in Section
IV-B) and four more baselines:

• Surprise Search (SS), described in Section III-A2. Sur-
prise search uses the same predictive model as SS-LC,
as described in Section IV-B and Fig. 2. The parameters

TABLE III
CHOSEN PARAMETERS FOR QD ALGORITHMS BASED ON A SENSITIVITY

ANALYSIS, AND THE AVERAGE NUMBER OF EVALUATIONS (WITH 95%
CONFIDENCE INTERVALS) OBTAINED ON THE MAZES OF FIG. I.

Algorithm Parameters Evaluations (·103)
NS-LC nLC = 5, nNS = 15 109.8± 4.4

SS-LC nLC = 10, nSS = 2,
115.7± 4.0

h = 2, kSS = 200

NSS-LC λ = 0.7, nLC = 5, nNS = 15,
104.2± 4.5

nSS = 2, h = 2, kSS = 200

NS-SS-LC nLC = 5, nNS = 15, nSS = 2,
111.0± 4.2

h = 2, kSS = 200

of SS (nSS , h, kSS) are the same as SS-LC in Table III.
• Novelty-Surprise Search (NSS), which is a single objec-

tive implementation that linearly combines novelty and
surprise (see Eq. 4) as described in [20]. Performing the
same analysis across λ values as in Section V-A1, we use
λ = 0.4 for NSS while nSS , h, and kSS are the same as
NSS-LC in Table III.

• Novelty Search–Surprise Search (NS-SS) uses a steady-
state NSGA-II multi-objective algorithm [39] to search
for non-dominated solutions on the dimensions of novelty
(Eq. 1) and surprise (Eq. 3). All parameters are the same
as NS-SS-LC in Table III.

• Surprise Search Archive with Local Competition (SSA-
LC), which is a variant of SS-LC where the diver-
gence objective of NSGA-II uses the surprise score but
also maintains a novelty archive identical to how it is
maintained in NS-LC [5] (using the same fluctuating
threshold and assessing individuals for insertion to the
novelty archive based on the novelty score of Eq. 1).
To calculate the surprise score, SSA-LC considers the
nearest neighbors both in the prediction space and in the
novelty archive. To calculate the local competition score,
SSA-LC considers the nearest neighbors in the current
population and in the novelty archive (similar to NS-
LC). Results for the best performing nLC parameter are
reported (nLC = 5), while other parameters of surprise
search (nSS , h, kSS) are the same as SS-LC in Table III.

The first three baseline algorithms test only the diversity
dimensions of some of the proposed QD algorithms (NSS
is the diversity dimension used in NSS-LC, while NS-SS is
the two-objective diversity component of NS-SS-LC). SSA-
LC tests another way of combining deviation from expected
(through the prediction space) and seen (through the novelty
archive) behaviors.

Fig. 4 shows the performance of all algorithms discussed
in this paper, separating QD approaches (on the left of the
figure) from pure divergent search approaches (on the right).
It is clear that using a local competition as a second objective
significantly improves performance over a divergence-only
variant (e.g., SS-LC versus SS, NSS-LC versus NSS). Notably,
the NS-SS multi-objective divergent search approach performs
surprisingly well, being the most efficient divergent search
approach and requiring significantly fewer evaluations than
both SS and NS. NS-SS actually performs at a similar level
as some QD approaches (such as SS-LC).
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Fig. 4. Sensitivity to algorithmic components: Average number of evalu-
ations in the 10 easiest mazes across five QD approaches (NS-LC, NSS-LC,
SS-LC, SSA-LC, NS-SS-LC) and four divergent search algorithms (NS, SS,
NSS, NS-SS). Error bars denote 95% confidence intervals.

Fig. 4 also highlights that while novelty search alone
underperforms compared to surprise search, NSS and SS-
NS, when combined into a QD algorithm the performance
rankings are much different. NSS-LC and NS-LC perform
much better compared to SS-LC (significantly for NSS-LC),
although the fact that a version of NS-LC was used to find
appropriate mazes that it can solve may have been a reason
for the good performance of NS-LC. Moreover, NS-SS-LC
does not perform better than NSS-LC and NS-LC in the same
way as NS-SS does over NSS and NS. While the performance
of NS-SS-LC is further discussed in Sections V-B and VI, a
likely reason is that the simultaneous optimization of three
objectives makes the problem more difficult for a multi-
objective approach to solve [42].

Finally, it is obvious that the introduction of a novelty
archive to surprise search leads to a much worse perfor-
mance. The working hypothesis for this behavior is the diver-
gence dimension of this multi-objective approach. Specifically,
“vanilla” surprise search attempts to deviate from predicted
points in the search space, which can force it to back-track
to previously seen areas of the search space. Introducing
a novelty archive, where such previously visited areas of
the search space are kept, actively deters back-tracking and
impairs the surprise search component of SSA-LC.

B. Comparison of QD Algorithms

Having ensured an optimal set of parameters for all QD
algorithms tested, each of the four quality diversity methods
are applied to each of the 60 generated mazes. Compar-
isons among QD methods—and against novelty search as
an indicative divergent search algorithm—aim to answer two
core questions: whether an algorithm is more likely to find
a solution in an evolutionary run than others (addressed in
Section V-B1), and whether an algorithm finds such a solution
in fewer evaluations (in Section V-B2). While not a measure
of performance, the evolved controllers are also compared
in terms of the complexity of the ANN evolved (in Section
V-B3), as an indication of genotypes favored by each approach.

1) Successes: Table IV shows how each method compares
in terms of number of successes in each of the 60 gener-

TABLE IV
ALGORITHMS TOURNAMENT: PERCENTAGE OF 60 GENERATED MAZES

FOR WHICH THE ALGORITHM IN A ROW HAS A STRICTLY GREATER (≥1)
NUMBER OF SUCCESSES COMPARED TO THE ALGORITHM IN A COLUMN.

LAST ROW AND LAST COLUMN ARE RESPECTIVELY THE AVERAGE OF
EACH COLUMN AND THE AVERAGE OF EACH ROW.

NS NS-LC NSS-LC SS-LC NS-SS-LC Average
NS – 1.7% 0.0% 5.0% 1.7% 2.1%
NS-LC 83.3% – 30.0% 51.7% 40.0% 51.2%
NSS-LC 81.7% 48.3% – 60.0% 45.0% 58.7%
SS-LC 70.0% 28.3% 25.0% – 30.0% 38.3%
NS-SS-LC 80.0% 41.7% 26.7% 46.7% – 48.7%
Average 78.7% 30.0% 20.4% 40.8% 29.2% –

Fig. 5. Robustness: number of successes over evaluations by aggregating all
the runs across the 60 generated mazes for each approach.

ated mazes. In this table, the number of mazes where one
approach outperforms the other (in terms of successful runs
out of 50) is shown on a per column and per row basis. As
expected, novelty search as a pure divergent approach has the
lowest rank compared to the other algorithms with only 2%
instances outperforming the four QD algorithms on average
and 79% instances being outperformed. On the other hand,
NSS-LC outperforms all approaches more often (59%) than
it is outperformed (20%). Notably, SS-LC does not perform
equally well, as it is often outperformed by NS-LC (52%);
however, NSS-LC outperforms NS-LC (48%) more often than
it is outperformed by NS-LC (30%). It is interesting that NS-
SS-LC outperforms NS-LC (42%) marginally more often than
the opposite (40%), but when compared to all the approaches
it has fewer instances of superior behavior (49%) than NS-LC.

It is important to note that NSS-LC is also superior to NS-
LC in the 10 easiest mazes, where both approaches are more
likely to have a successful run than in the hardest mazes of
the test set; in harder mazes, a successful run is largely a
matter of chance. In the 10 easiest mazes of Fig. I, NSS-LC
outperforms NS-LC in 6 of 10 mazes and is outperformed by
NS-LC in 4 mazes. Note that results in Table IV are from
50 runs independent of the runs performed for the sensitivity
analysis of Section V-A; however, admittedly the parameters of
both NS-LC and NSS-LC were optimized explicitly for these
10 mazes of Fig. I.
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Fig. 6. Average number of evaluations from all the runs across the 60
generated mazes of each algorithm (i.e., 3000 runs per algorithm). Error bars
denote 95% confidence intervals.

2) Robustness: While the number of evolutionary runs
resulting in a success is a good indication of algorithms’
performance, it is worthwhile to investigate how quickly
those solutions are found. We use robustness as a secondary
performance metric: robustness is defined as the number of
overall successes obtained by each algorithm after a number
of evaluations. This indicates how consistent the results are,
should evolution stop earlier than the current generation limit.

Fig. 5 and 6 report the robustness and the average number
of evaluations respectively per method. Results are aggregated
among all the runs of the 60 generated mazes per method,
i.e., a total of 3000 runs. Aggregating successes across mazes
allows for a more realistic view of algorithmic performance:
averaging successes across the 60 mazes leads to very large
deviations as some mazes are much harder than others (based
on NS-LC performance described in Section IV-C). Unsur-
prisingly, novelty search is outperformed by every other algo-
rithm from 20·103 evaluations onwards, achieving a total of
149 successful runs in 60 mazes. NSS-LC outperforms NS-
LC and NS-SS-LC after 20·103 evaluations and consistently
reaches more successes than any other method from that point
onward. When the maximum evaluations are reached, NSS-
LC obtains 451 successes versus the 400 successes of NS-LC,
405 successes of NS-SS-LC and the 344 successes of SS-
LC. The superiority of NSS-LC over NS-LC is also evident
in Fig. 6, as on average NSS-LC requires significantly fewer
evaluations than every other algorithm. This finding is not
surprising per se, since NSS-LC finds more solutions while
other approaches often spend their entire budget (evaluations)
searching but not finding a solution. However, Fig. 6 estab-
lishes that this difference in successes results in a statistically
significant acceleration of the algorithm. NS-SS-LC seems to
perform very similarly to NS-LC, both in terms of number
of successes over the progress of evolution, and in terms of
average evaluations of Fig. 6. This observation is corroborated
by tests in Sections V-A1 and V-A2. Finally, results of SS-LC
are underwhelming also in terms of robustness, as it quickly
falls behind both NSS-LC and NS-LC, and on average it needs
significantly more evaluations than other QD alternatives.

Fig. 7. Complexity: number of connections (left figure) and hidden nodes
(right figure) on average for evolved ANNs which solve the mazes per
approach. Error bars denote 95% confidence intervals.

3) Genomic Complexity: As an indication of the type of
solutions favored by each evolutionary method, we compare
the complexity of the evolved ANNs which were successful
in finding the goal in each method (i.e., 400 ANNs for NS-
LC, 149 ANNs for novelty search etc.). Genotypic complexity
refers here to the average number of hidden nodes and
connections of a successful ANN. In [7], [20], [37], the
genotypic complexity across three divergent search methods
(novelty, surprise and novelty-surprise search) showed that
each method favored different structures, with surprise search
favoring far larger networks than novelty search. Figure 7
shows the average number of hidden nodes and connections
per approach. As in previous findings [7], novelty search favors
very small networks (few connections, few hidden nodes),
while NS-LC has denser and larger networks than novelty
search but less than both NSS-LC and SS-LC (significantly
so for SS-LC). Finally, it is interesting to note that NSS-LC
has significantly smaller and sparser networks than SS-LC,
striking a happy (i.e., most effective) medium between NS-LC
and SS-LC. Structural metrics of ANNs evolved by NS-SS-LC
have no significant differences with either NSS-LC or NS-LC,
but seem to fall between the two; the similarity with networks
of NS-LC is further evidence that NS-SS-LC performs a very
similar search process as NS-LC, which explains their similar
performance in Fig. 5.

VI. DISCUSSION

In the experiments of Section V, we compared three new
quality diversity algorithms with alternate dimensions of di-
versity combined with local competition in terms of robustness
and efficiency in discovering solutions in diverse maze setups.
The key findings are that NSS-LC outperforms the other QD
approaches considered in this work, namely NS-LC, NS-SS-
LC and SS-LC; NS-SS-LC has a very similar performance
as NS-LC, while SS-LC underperforms by comparison. The
findings on NSS-LC validate our hypothesis that surprise can
be a beneficial form of search for quality diversity. Coupled
with our findings from the sensitivity analysis in Section
V-A when components of the QD algorithms were added or
removed, we speculate and discuss two likely reasons why
adding surprise to novelty helps to achieve better overall
performance.

A core hypothesis for the differences in algorithmic perfor-
mance is that surprise search allows the algorithm to back-
track, re-visiting areas of the search space that have been ex-
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plored in previous generations. Since surprise search operates
on diverging from predictions, it may favor past behaviors
if they are sufficiently different from predicted future trends.
We have already provided such an example from nature in
Section I, where “terror birds” were surprising as they went
against behavioral trends (birds were becoming smaller and
better fliers) while not being particularly novel historically.
By comparison, novelty search actively discourages re-visiting
areas of the search space due to the novelty archive. This
has been a hypothesis for the efficiency of surprise search
compared to novelty search in purely deceptive tasks [7],
although admittedly it is difficult to prove quantitatively.
However, an indication of the back-tracking nature of surprise
is gleaned by the more complex networks evolved to solve
the mazes in Table 7; the increased size compared to novelty
search, which is consistent in other studies [7], [20], is likely
because same areas of the behavioral space are re-visited
in later stages of evolution with larger networks. A clearer
indication is that when surprise search with local competition
also considers an archive of past novel individuals (SSA-
LC), its performance drops significantly. We expect that the
influence of an archive which actively deters back-tracking
goes against the main drive of surprise search. It is evident
that the back-tracking of surprise search does not seem to
perform well in QD algorithms, as combining it with local
competition seems to lead to local optima. This is perhaps
why SS-LC underperforms in these tests, although it should
be noted that it still scores more successes than novelty search
alone in 70% of mazes. On the other hand, allowing novelty
search to back-track through a surprise score component is
likely why NSS-LC performs better. There is a fine balance
between too much back-tracking (e.g., in SS-LC) and too little
(e.g., in NS-LC), but the fact that NSS-LC performs better at
higher λ values (e.g., λ = 0.6 or λ = 0.7 in Fig. 3) should be
an indication that the novelty score primarily drives the search
and back-tracking is favored in specific circumstances.

The second likely cause for a high-performing NSS-LC
is based on recent research on novelty in highly successful
patents, where the authors focused on the “sweet spot” of
novelty [43]. That study suggests that a sweet spot of novelty
might exist on the border of what we can call a “conventional
solution” and a completely novel solution. A similar hypothe-
sis suggests that optimal solutions exist on the border between
feasible and infeasible spaces in constrained optimization [44].
In the maze navigation domain, for instance, behaviors that are
“too novel” might dominate solutions that are less novel but
more promising. Surprise may help to search in a more fine-
grained fashion the space between a completely new solution
and solutions already in the population or in the archive, in
order to find the desired sweet spot of novelty. This is not
only possible through back-tracking, but especially in NSS
it is due to the balance of the two scores (novelty versus
surprise). When the population in one generation becomes too
novel compared to that of the previous generation, predictions
will be even more distant points; in this case, the surprise
score will have a larger impact as the distance from predicted
points will be larger than that of past or current points. In
general this balancing factor softens the greedy search for all-

new solutions and, coupled with the secondary objective of
local competition, results in a more efficient search process.

The difference between NS-SS-LC and NSS-LC is perhaps
the most surprising, as we would expect the decoupling of
novelty and surprise scores to perform better compared to an
aggregated approach. The very good performance of NS-SS
as a two-objective divergent search algorithm (outperforming
NSS) also indicated that a decoupling of the two measures of
divergence would be beneficial and pointed to the orthogonal
nature of surprise and novelty. However, as a QD algorithm the
three-objective NS-SS-LC approach seemed to perform on par
with NS-LC, to the degree of evolving similar sized networks.
We can assume that the simultaneous search for three dimen-
sions (compared to all other QD approaches which search
along two dimensions) was the primary cause of its subdued
performance. As dimensions increase, so does the number
of non-dominated solutions [42], which makes the search
process slower. A further complication is that all three of the
dimensions have dynamic, fluctuating scores: novelty search
is sensitive to both the population and the novelty archive
and the same individual may receive a different novelty score
from one generation to the next. The same applies for surprise
score, which depends on the ever-changing recent trends and
predictions which are recalculated in every generation, and the
local competition which again depends on other individuals in
the population and the novelty archive. How multi-objective
algorithms handle such dynamic fitness dimensions has not
been sufficiently examined, and is an interesting direction of
inquiry. Due to the high performance of NS-SS, however, we
expect that an algorithm that can in principle handle more
objectives more efficiently will lead to improved performance
for NS-SS-LC. We can envision that a reference point based
algorithm, such as NSGA-III [45], might mitigate some of
these problems and will be considered for future work.

We should note that all algorithms in this work use a
steady-state version of NEAT, as in [2]. In particular, the
multi-objective algorithms (NS-LC, SS-LC, NSS-LC, NS-SS-
LC) use an improved version of NSGA-II for steady-state
implementations [39]. There are three main reasons behind this
choice: first, for fair comparisons with the baselines used in
this work (NS, SS, NSS) which use a steady state implementa-
tion for the maze navigation testbed [2], [7], [20]; second, due
to evidence in [46] that the generational counterpart of novelty
search does not perform equally well in a maze navigation
scenario, likely due to a “less informative gradient” for novelty
search given by a generational reproduction mechanism [26];
third, due to arguments in recent studies [47]–[49] that a
steady-state multi-objective implementation can be beneficial
in terms of convergence and diversity for particular problems.
Based on these studies we assume that a steady state imple-
mentation is more suitable for the maze navigation testbed.
Nevertheless, future work will test the degree to which this
assumption holds by comparing current findings against a
generational implementation of the proposed QD algorithms.

A. Extensions and Other Applications
This paper focused on enhancing one QD approach: a multi-

objective blend of a divergence score and a measure of local
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superiority. Other approaches for QD such as MAP-Elites [4]
could also be considered, either as another QD algorithm used
as a benchmark for NSS-LC, or to actually introduce surprise
as a way of searching within the space of MAP-Elites. Surprise
could be integrated into MAP-Elites, for instance, by storing
two different maps: one used in the normal algorithm and the
other used for prediction, with deviation from predictions used
as a selection process for the algorithm.

An important direction for surprise-based QD algorithms
is exploring different prediction models (m in eq. 2) for
the computation of surprise. While a simple linear regression
model seems to be sufficient for delivering state of the art
results in the maze navigation domain, other surrogate models
[50] such as kriging modeling could be investigated for more
complex tasks and domains [51].

Searching for quality diversity in other domains is also a
promising broad area for future work. Quality diversity is
particularly well-suited, for example, in procedural content
generation (PCG). PCG algorithms are used to create content
for games, such as levels, buildings, weapons or characters
[52]. However, such content needs to fulfill several desired
properties, such as high quality, reliability, believability and
diversity. Generating content that shows all these desired
properties at the same time is difficult; most PCG algorithms
focus currently only on one dimension. For example, if we
focus on quality and diversity of the generated content, a trade-
off needs to be made. If the search space is too restricted,
quality can be guaranteed, but the solutions will be more
similar. On the other hand, pushing for diversity can lead
to poorly suboptimal solutions or—if the search space is
too broad—unusable content. While this problem has already
been tackled successfully in different ways [13], [28], [53],
an innovative take would be to introduce the proposed QD
algorithms for PCG, thereby testing their capabilities both in
terms of diversity and quality of the artefacts generated. In
fact, while in constrained optimization PCG approaches [13],
[28] the search space is subdivided into feasible and infeasible
space, a QD approach might discover more diverse solutions
as the search space is divided into multiple niches. Finally,
the surprise-based QD algorithms should be tested against a
broader set of state of the art evolutionary algorithms, such as
CMA-ES [54] or multimodal optimization algorithms [25].

VII. CONCLUSION

This paper explored the impact of different diversity strate-
gies on quality diversity evolutionary approaches and tested the
hypothesis that surprise search may augment the exploration
capacity of QD algorithms. Building on the concept of novelty
search as one dimension coupled with local competition as
a second dimension, alternatives to novelty search which
used surprise or a combination of novelty and surprise were
devised. These new QD algorithms were tested extensively
on the maze navigation domain; we used a broad set of 60
mazes with varying degrees of deceptive fitness landscapes
and each algorithm was evaluated across a total of 3000
evolutionary runs. Experiments concluded that an aggregated
novelty-surprise search with local competition outperforms

other QD algorithms, both in terms of number of runs which
find a solution to the problem and the number of evaluations
in which such solutions are found. These findings open new
directions in exploring different notions of divergence, and
establish surprise as an alternative notion to novelty not only
for divergent search but also for quality diversity algorithms.
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