
Sentient World: Human-Based Procedural Cartography
An Experiment in Interactive Sketching and Iterative Refining

Antonios Liapis1, Georgios N. Yannakakis1,2, and Julian Togelius1

1 Center for Computer Games Research
IT University of Copenhagen

Rued Langaards Vej 7
Copenhagen, Denmark

2 Department of Digital Games
University of Malta

Msida, Malta

Abstract. This paper presents a first step towards a computer-assisted design
tool for the creation of game maps. The tool, named Sentient World, allows the
designer to draw a rough terrain sketch, adding extra levels of detail through
stochastic and gradient search. Novelty search generates a number of dissimilar
artificial neural networks that are trained to approximate a designer’s sketch and
provide maps of higher resolution back to the designer. As the procedurally gen-
erated maps are presented to the designer (to accept, reject, or edit) the terrain
sketches are iteratively refined into complete high resolution maps which may
diverge from initial designer concepts. Results obtained on a number of test maps
show that novelty search is beneficial for introducing divergent content to the
designer without reducing the speed of iterative map refinement.

1 Introduction

In order to address the increasing time and resource requirements of content creation,
more and more game companies use algorithmic means to either mass-generate trivial
game content such as trees3 and rocks [1] or to reduce designer effort by automating
the mechanizable aspects of content creation, such as feasibility checking. The proce-
dural generation of terrain is applied — to different extents — in many game titles to
create the vast landmass of the game’s virtual environment. Given the different con-
straints stemming from the gameworld’s theme, mechanics and quests, designers prefer
to maintain a level of control over the generated terrain. In most contemporary tools,
this equates to manually editing the terrain after it has been (randomly) generated.

To address the requirement for designer control over generated content with min-
imal investment in human effort, this paper presents a first step towards a computer-
assisted design tool for the creation of game maps. This tool, named Sentient World,
allows a designer to progressively add details to a rough sketch through the process of it-
erative refining. Iterative refining is accomplished by artificial neural networks (ANNs)
trained via gradient search to conform to low-resolution sketches submitted by the de-
signer; the infinite resolution potential of ANNs is then used to create higher-resolution
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maps which are submitted back to the designer to accept, reject, or edit. The iterative
refining process is enhanced by neuroevolutionary novelty search which increases di-
versity in the pool of networks. Results obtained on a number of test maps show that
the coupling of gradient and novelty search introduces divergent content without a sig-
nificant computational overhead.

This is the first attempt, to the authors’ knowledge, to combine novelty with gradi-
ent search via backpropagation in order to increase the representational power of ANNs
without the uncontrollability often attributed to stochastic search algorithms. Addition-
ally, the paper introduces the concept of iterative refining, where a human and a com-
puter collaboratively add details to a rough concept sketch. While Sentient World is
not tested with human designers in this paper, iterative refining is shown to secure the
authorial control of human users as it largely conforms to initial designer sketches.

2 Related Work

Most techniques used for generating game terrain, both in the game industry and within
academia, use fractals and noise to generate heightmaps [2]; however, there have been
several attempts at controlling the generated artifacts. A popular technique allows a
designer to specify real-world examples of desired terrain: Ong et al. [3] evaluate
heightmaps generated via evolved terrain transformations based on their conformity
to example terrains in a database, Li et al. [4] generate landscapes by combining dif-
ferent regions (hills, plains, etc.) selected from a database by a support vector machine
trained to differentiate between terrain types and Zhou et al. [5] allow the user to sketch
terrain features which are algorithmically refined based on real-world digital elevation
models. Such example-based approaches, however, are limited by their corpus of ex-
amples, and fail to generate landscapes that do not conform to earth-like geologies and
physics. Moving away from the real world, Ashlock et al. [6] rely on designer-specified
desirable elevation models, and evaluate heightmaps generated via evolved L-systems
based on the RMS error between generated and desired heights. Sentient World is sim-
ilar to this method in that it relies designer-specified desirable elevation models and
uses an error function for evaluating map fidelity; however, the ANN representation
used in this paper lends itself better to infinite resolutions and does not suffer from L-
systems’ poor locality. Other projects try to increase designer control by limiting — but
not eliminating — the randomness of the tool. SketchaWorld [7] coins the term “in-
teractive procedural sketching” and allows designers to paint ecotopes on a tile-based
grid; the tiles are transformed into detailed 3D representations of mountains and hills
using fractal noise and grid interpolation. SketchaWorld provides some authorial con-
trol, with randomness being limited to tile-size chunks with specific properties. For
even more control, Gain et al. [8] allow users to sketch a freeform terrain feature via its
silhouette and boundary, generating a 3D terrain feature via interpolation, deformation
and noise; the generated artifacts are faithful to the designer sketch, but require very
precise specifications from the designer. Sentient World instead allows for very coarse
sketches which are iteratively refined. Finally, control can be asserted via the behavior
of terraforming agents, which interact with each other and the world to generate virtual



landscapes [9]; the sheer number of parameters controlling agent behavior makes such
a tool cumbersome, as it requires trial and error to discern the impact of each parameter.

Evolutionary art has often focused on the automatic generation of artifacts, but de-
signer intention is usually accommodated via interactive evolution [10]. Interactive evo-
lution does not inherently have a mechanism for designers to specify aesthetic criteria
which must be satisfied and is thus likely to create unwanted content; additionally, in-
teractive evolution is likely to evolve artifacts very dissimilar to those chosen by the
designer. To provide some direction to evolution and develop the ability to appreciate
art, some researchers have used ANNs to evaluate generated content. Pre-training the
network to simulate user ratings in a collection of generated content [11], to differentiate
between different artists [12] or between human-authored and generated images [13],
researchers attempt to create artificial art critics [14] capable of automatically evaluat-
ing generated content. The Sentient World tool has dissimilar aims in that it does not
attempt to appreciate the designer’s work but to conform to it. For that purpose, it uses
ANNs to enforce the designer’s constraints to its generated artifacts, ensuring that au-
thorial control is maintained. As a computer-assisted design tool, Sentient World aims
to accommodate its human designer more than it intends to completely automate the
design process.

3 Methodology

The Sentient World tool is geared towards the iterative refining of maps, illustrated in
Fig. 1. A user manually draws a low-resolution map; the height data from this map are
used to train a number of neural networks previously optimized towards novelty via
neuroevolution. Once the networks’ training (via gradient-search) is completed on the
user-provided data, each ANN generates a map of higher detail which is presented to
the user. The user can accept or manually edit the detailed maps, and resubmit them for
further refining; the process terminates once the designer is content with their final map.
The number of maps presented to the user is limited to eight in this study — despite the
fact that evolution runs on a larger population — in order to reduce both the training
time of ANNs and the cognitive load on the designer when inspecting the detailed maps.

3.1 Representation

The maps generated by the Sentient World tool consist of a number of tiles, with each
tile designating a specific height zone. The number of tiles (also termed resolution) and
the number of height zones are interconnected and determine the level of detail (LOD)
of the sketch (Fig. 2). A map sketch of any LOD can be encoded by a multi-layer ANN
using a sigmoid activation function for all its nodes. The map is represented by an ANN
in the following fashion: the normalized x, y coordinates of each tile’s midpoint (red
points in Fig. 3b) are used as input of the ANN, with the output being the tile’s height
value h. The output h belongs to a height zone i if h∈[li, ui), where li the zone’s lower
bound and ui its upper bound (see Fig. 2b).
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Fig. 1: An outline of the design process via the Sentient World tool, showing the dif-
ferent options for interaction (Finish, Continue and Refine) available to the user. Gray
boxes represent user actions.

3.2 Iterative Refining

The key contribution of the Sentient World tool to existing paradigms of computer-
assisted design is the process of iterative refining which allows the user, through in-
teraction with the tool, to add an increasing number of details to a rough sketch. The
process of iterative refining is currently accomplished through the training of multi-
ple ANNs to conform with the rough sketch provided by the user. In order to increase
diversity in the refined sketches and increase the ANNs’ predicting abilities, a short
evolutionary run optimizes these networks towards novelty and larger topologies.

ANN training: Iterative refining is accomplished through the training of multiple
ANNs to approximate the patterns of the user-provided low-resolution sketch. In or-
der to train these ANNs, the user sketch is converted to a dataset of input-output pairs.
Inputs are the normalized x, y coordinates of the tile’s midpoint (red points in Fig. 3b)
and the desired output d is the tile’s height zone average (d = li+ui

2 ; where i is the
tile’s height zone and li, ui are the zone’s lower and upper bounds, respectively).
The error e of the network, for actual output a and desired output d, is calculated as
e = 1

2 (d − a)2. Each network is trained via backpropagation [15] to minimize errors
of the entire dataset, and training terminates either once all output values are within the
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Fig. 2: The Levels of Detail (LOD) used for the map sketches (from left to right: LOD
of 1, 2 and 3), in terms of grid resolution and height zones. Numbers in Fig. 2a refer to
the number of tiles available in each row and column for that LOD, while numbers in
Fig. 2b refer to the lower and upper bounds (li, ui) of each corresponding height zone.
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Fig. 3: An example of the iterative refining process. The initial sketch at LOD=1 drawn
by the user (a) is used to create a dataset (b) using the height zone average (0.25 for
water, 0.75 for land) at each tile’s midpoint (red points). The dataset is used to train
an ANN (c). Once training is complete, the ANN outputs the height values from the
coordinates of a more detailed map (d) which are encoded into height zones of LOD=2,
generating the refined map (e).

desirable height zones or after 105 epochs. Back-propagation is carried out with non-
batch weight updates and a learning rate of 0.1. Once training is complete, the ANN
is used to generate a more detailed map, increasing both the resolution LOD and the
height zone LOD by one step; thus the network has a larger number of coordinates for
inputs, while its h outputs correspond to more precise height zones (see Fig. 3e).

Neuroevolution: As the maps’ resolution increases, the dataset of input-output pairs
becomes more complex and requires a larger network to approximate. Additionally, as
the user is presented with various detailed map suggestions during the iterative refining
step, varying the topology and initial weights of the networks prior to training is likely
to create more variation in the final results. For these two reasons, a short evolutionary
run optimizes the ANNs towards novelty [16]. Evolution is carried out via neuroevolu-
tion of augmenting topologies (NEAT), which has a chance of increasing the number of
layers, the number of nodes, and the number of links of the neural networks in the pop-
ulation [17]. Following the novelty search paradigm [16], evolution optimizes networks
towards maximizing the objective function ρ, which corresponds to the average distance
of the k most similar networks in the population and in an archive of novel individuals.
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Fig. 4: A visualization of the impact of novelty search: an initial population (b) of sim-
ilar, simple networks are evolved towards larger topologies (c) and dissimilar pheno-
types (d), expanding the expressivity of generated artifacts. Once evolution sufficiently
explores the search space, gradient search constricts expressivity towards artifacts that
conform to the user-defined dataset of the initial sketch (a). The final, trained ANNs
generate more diverse refined maps (e).

The archive stores the highest scoring individuals in the population (in terms of ρ) and
is reset at the start of every run of the evolutionary algorithm. The fitness score ρ(i) for
individual i is calculated as:

ρ(i) =
1

k

k∑
j=1

dist(i, µj) (1)

where µj is the j-th-nearest neighbor of i (within the population and in the archive of
novel individuals). Distance dist(i, j) between networks i and j, is calculated as:

dist(i, j) =
1

T

T∑
t=1

|hi(t)− hj(t)| (2)

where T is the number of tiles of the encoded map on the same resolution, i.e. (c) in
Fig. 4 and hi(t) is the h value at tile t’s midpoint of the map encoded by network i.

Evolution is carried out for 20 generations on a population of 20 individuals, with
the 5 fittest networks per generation stored in an archive of novel individuals and the
closest 5 individuals considered when evaluating ρ. If no prior refining has occurred



(a) Sketching interface while the user draws
a new map sketch (with LOD of 2).

(b) Selection interface while the user selects
a higher resolution map sketch (with LOD
of 3) to refine the sketch from Fig. 5a.

(c) Sketching interface while the user man-
ually refines the selected map from Fig. 5b.

(d) The full resolution of selected map from
Fig. 5b, displayed as a heightmap.

Fig. 5: The User Interface for the Sentient World tool.

during the current session, the initial population in the evolutionary run consists of
fully connected networks with randomly initialized weights and one hidden layer with
four nodes. If a map and its encoding network has already been selected during previ-
ous refining steps, the initial population in the evolutionary run consists of mutations of
the selected network, thus preserving its more elaborate topology. In order to bypass the
problem of recombining networks of different topologies, evolution takes place only via
mutation by adding a new node (10% chance) or a new link (15% chance) to the net-
work, or otherwise modifying the weight of one randomly selected link. The selection
of individuals for mutation is made via a fitness-proportionate roulette-wheel scheme.
Once evolution is terminated, the eight fittest networks are selected and trained using
backpropagation, as described above (see Fig. 4).

3.3 User Interface

The Sentient World generative tool aims to assist the user both in the generation and
in the refinement of terrain models; the former is accomplished through a simple map



editor and the latter through the presentation of maps of higher detail. The map editor
screen (Fig. 5a) allows the user to paint the map’s tiles using brushes for different height
zones. In addition to the height zones in Fig. 2b, the user can designate black tiles in
the map, which act as wildcards and can be of any height. Black tiles are not included
in the dataset for training the ANNs in the iterative refining process.

The map selection screen (Fig. 5b) allows the user to inspect the refined maps gen-
erated according to Section 3.2. The interface allows up to eight maps to be shown, al-
though identical maps are omitted. The user may select a single map among presented
ones, in which case the following actions become available:
Continue which re-runs the generative algorithms on the current level of detail, with

an initial population seeded by the ANN of the selected map.
Refine which runs the generative algorithms on the next level of detail, using the height

data of the selected map as the training dataset.
Edit & Refine which allows the user to load the selected map in the map editor and

make manual adjustments; the modified map is used as the training dataset to gen-
erate the maps of the next level of detail.

Finish which uses the ANN of the selected map to generate the full resolution heightmap
(Fig. 5d), allowing for further calculations and for exporting to a file.

If the user selects no map among those presented, they have the option to re-attempt the
map generation process (on the current level of detail) with a new initial population. The
available user actions are also shown in Fig. 1; manual editing is an optional component
to the process of refining, and appears in a dotted outline.

4 Experiments

To evaluate the potential of the iterative refinement approach and the efficacy of the pro-
posed method, a number of sample maps are refined through the algorithm described
in Section 3.2. These sample maps (shown in Fig. 6) have three distinct patterns — i.e.
Land (L), Island (I) and Shore (S) — on two LODs. The maps were selected for their
diversity — e.g. the patterns in map L1 are much simpler and easier to learn than those
of map I2. In a simulated run of Sentient World, the above maps are refined by eight
ANNs, since that is the number of presented maps in the Sentient World interface. The
impact of gradient and novelty search is tested via two experiments: in the first, back-
propagation (BP) is used to train eight randomly initialized fully-connected ANNs with
a hidden layer of four nodes. In the second, backpropagation is used to train the eight
fittest ANNs evolved via novelty search from a population of 20 ANNs for 20 genera-
tions; the initial population’s ANNs has the same topology as the randomly initialized
ANNs of the first experiment.

The performance measures considered in this study include the runtime, derived
from an Intel i7 at 2.10GHz with 8 GB of RAM, and the average distance between the
refined maps; significance is tested through standard t-tests (significance is 5% in this
paper). Average distance d̄ is calculated as:

d̄ =
1

P (P − 1)

P∑
i=1

P∑
j=1
j 6=i

dist(i, j) (3)
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Fig. 6: The six initial maps which will be refined by the Sentient World tool. Maps L1,
I1, S1 have LOD=1 while maps L2, I2, S2 have a similar form to their respective coarse
counterparts, but with LOD=2.

Template BP BP with novelty search
Map ANN time (s) Avg. Distance Evolution time (s) ANN time (s) Avg. Distance
L1 0.14 0.103 (0.023) 0.15 0.16 0.122 (0.031)
L2 0.23 0.013 (0.002) 0.33 0.58 0.028 (0.005)
I1 7.89 0.036 (0.008) 0.08 4.18 0.036 (0.009)
I2 1183.15 0.046 (0.004) 0.27 684.08 0.046 (0.005)
S1 6.81 0.012 (0.006) 0.15 2.67 0.029 (0.019)
S2 569.25 0.016 (0.004) 0.20 680.86 0.031 (0.004)

Table 1: Comparison of the refinement processes for different template maps, using
backpropagation (BP) with and without novelty search — i.e. BP trained on random
ANNs vs. BP trained on initial ANNs guided by novelty search. Running times of the
ANN training (ANN time) and evolution (Evolution time) and the average distance
between maps are the performance measures considered.

where P is the number of presented maps (P=8 in this paper) and dist(i, j) is the
distance metric of (2) but calculated on the refined maps, i.e. see Fig. 4e.

The results of the different maps’ refinement for the two approaches are shown in
Table 1 containing the mean values collected across 20 individual runs, with standard
deviation among runs shown in parentheses. Figure 7 displays the refined maps en-
coded by the trained ANNs of the most successful run in terms of average distance.
We observe that for L and S patterns novelty search succeeds in significantly increas-
ing the diversity of generated maps. Inspecting the most successful artifacts in Fig. 7,
backpropagation combined with novelty search creates far more visually interesting
and complex maps for S1 and L2, compared to the repetitive patterns when applied on
simpler networks. For the Island patterns (I1, I2), backpropagation with and without
novelty search generates maps which conform equally well to the user-defined dataset;
however, novelty search does not enhance the diversity of these particular map patterns.
With respect to computational time, the larger topology of networks evolved via NEAT
increases the training time for backpropagation in the L and S patterns. Small networks
appear able to easily encode the simple patterns in the L and S datasets; backpropaga-
tion on random small networks can therefore quickly learn such patterns, but creates
visually uninteresting results. On the other hand, there is a surprising decrease in the
computational time required to train the larger evolved networks for the Island patterns,
compared to the training time for random small networks. While not necessarily creat-
ing more diverse results, novelty search enhances backpropagation for such maps since
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Fig. 7: Comparison of the eight refined maps trained via backpropagation (BP) with
and without novelty search, for each template map. The maps are collected from the
run with the highest average distance.

the larger networks are able to learn these complex patterns faster than the small random
networks. The presented sample maps showcase that novelty search can contribute —
with minimal computational overhead compared to that of backpropagation — to faster
training and more diverse results, although one often at the expense of the other.

5 Discussion

The combination of stochastic and gradient search for the generation of novel maps
conforming to designer intentions has shown promising results on the sample maps
used to evaluate the proposed iterative refinement algorithm. The most important future
research step is to test the tool with human designers, by collecting usability metrics,
questionnaires, or verbal feedback and by measuring the impact of back-propagation
and novelty search. A concern for the presented approach is the required runtime be-
tween iterations of sketching and refining. In larger resolutions and complex patterns,
the size of the dataset makes training slow (e.g. 20 minutes for sample map I2). It is
not realistic for a computer-assisted design tool promoting human-machine dialog to
require such long periods of inaction from the human user. Future work will address
the issue by reducing the number of maximum epochs before training terminates, by
training each network in its own thread running on parallel and by showing the refined
maps while training is under way, allowing users to terminate training prematurely if
they find the maps interesting. An alternative solution for reducing training time in
high-detail sketches is to take advangage of problem decomposition: an ANN can be
pretrained to conform to a low-detail version of the user-defined map before learning
the high-resolution map patterns.

Although gradient search helps preserve designer intentions during the generative
process, it requires “close” supervision which may not be appropriate in cases where the
designer does not wish to specify all the map details. While designers often have specific
ideas on the heightmap of their terrain, other properties such as temperature or humidity



are much more difficult to manually specify and would increase the cognitive load on
the side of the designer. Future work will explore the unsupervised search of patterns
via neuroevolutionary algorithms such as NEAT [17], in circumstances where the de-
signer provides high-level specifications such as vegetation on areas of the map and the
algorithm optimizes the underlying conditions (temperature, humidity, and soil consis-
tency maps) for the satisfaction of those specifications. Combining neuroevolution with
constrained optimization has been quite successful for the generation of content which
satisfies strict design requirements [18, 19]. Additionally, the elevation patterns stored
in the trained ANNs can be used as scaffolds [20] for generating complementary maps
(such as vegetation or temperature maps) through the use of CPPNs [21].

The visual appearance of the final maps is limited to both the representation em-
ployed and the training process followed. The sigmoid functions used in the ANNs of-
ten generate very “smooth” landscapes, with rounded shorelines and smooth elevations.
More interesting features could be added via noise, but the randomness would remove
the controllable aspect of this tool. The use of other activation functions might create
more interesting shapes, but such networks can only be trained through evolution, such
as CPPN-NEAT [21]. Otherwise, fast and deterministic erosion algorithms [22] could
be applied to the heightmaps for a more realistic appearance.

6 Conclusion

The framework presented in this paper is a first step towards a tool supporting and
enhancing human creativity, which provides more designer control than most designer-
assistive tools available in the literature. Preliminary results show that gradient search
(via backpropagation) is able to satisfy most designer-imposed constraints, while evo-
lution via novelty search can increase the networks’ representational power and the di-
versity of the generated results. Future steps should address the computational demand
in large datasets, and aim to increase the amount of world features generated (vege-
tation, cities) and reduce the requirements for designer control to more abstract goal
specifications. While the Sentient World tool currently generates heightmaps for use
as gamewords, minimal changes — such as increasing the number of network outputs
to three for RGB formats — could allow it to become a tool for visual artists, where
the human artist begins by creating a rough sketch with basic colors and through the
iterative refining process generates a final image which can have endless resolution.
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