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Abstract—This paper describes how a surrogate model of the
interrelations between different types of content in the same
game can be used for level generation. Specifically, the model
associates level structure and game rules with gameplay outcomes
in a shooter game. We use a deep learning approach to train
a model on simulated playthroughs of two-player deathmatch
games, in diverse levels and with different character classes per
player. Findings in this paper show that the model can predict
the duration and winner of the match given a top-down map
of the level and the parameters of the two players’ character
classes. With this surrogate model in place, we investigate which
level structures would result in a balanced match of short,
medium or long duration for a given set of character classes.
Using evolutionary computation, we are able to discover levels
which improve the balance between different classes. This opens
up potential applications for a designer tool which can adapt
a human authored map to fit the designer’s desired gameplay
outcomes, taking account of the game’s rules.

Index Terms—deep learning, surrogate model, artificial evo-
lution, procedural content generation, computational creativity

I. INTRODUCTION

Despite a long history of procedural content generation
(PCG) in the game industry, there is still a gap between the
algorithms developed in the academic community and those
applied in the commercial sector. In an effort to address one
of the major concerns of the industry, there is an increasing
research interest in giving designers more control over the
generated content. There are several ways to ensure that a
designer can influence the creative process, e.g. by creating
a set of modular components that can be recombined via a
generative grammar [1] or evolution [2], by placing constraints
which can be solved via answer-set programming [3], or by
adjusting the objectives of a search-based generator [4].

While there has also been work towards making the designer
a part of the generative loop itself, e.g. via interactive evolution
or through a mixed-initiative process [5], this paper will focus
on tools that allow the designer to customize the generative
space a priori. This can be done with visualizations that show
the effect of generative parameters on the expressive range of
the generator [6], allowing designers to more efficiently tune
the algorithm’s parameters to the intended outcomes, or by
allowing designers to literally set targets (or acceptable ranges)
for their desired output. Both search-based and constrained

programming approaches can use such a designer-specified
goal to bias their generative output.

This paper proposes a tool for designers to create or adapt
levels towards specific gameplay outcomes. The tool takes
advantage of a model of gameplay that can predict emergent
gameplay properties from the level structure as well as the
game’s ruleset. This model, trained via deep learning on a
large corpus of simulated plays with artificial agents, acts as a
surrogate model [7] and bypasses the need for computationally
expensive simulations. As a design tool, the quick response
times afforded by this model can be used both for immediate
feedback while the designer adapts the level or the game rules
(both of which affect the gameplay outcomes). Moreover, as
explored in this paper, the surrogate model can be used to
generate new levels or variations of existing levels through a
search-based process which uses the surrogate model instead
of computationally expensive simulation-based evaluations.

The use case in this paper is competitive first person shooter
(FPS) gameplay, which has easily quantifiable gameplay out-
comes, i.e. gameplay balance (whether a player wins easily
over another) and match duration (whether the match is over
quickly). The game rules and level structures that are being
provided as input to the surrogate model are the game’s
competing character classes and the top-down view of the
FPS map. Character classes are common in shooter games:
each competing player chooses a class, which may have a
different survivability and speed as well as a signature weapon
which fits its role (e.g. scout, sniper class). The FPS map
itself has multiple floors, to allow for FPS level patterns
such as sniping positions [8]. Experiments in this paper focus
on the designer-guided aspect of this framework, allowing
designers to specify a map they would like to improve, the
target character classes that this map is intended for, and the
desired game balance and duration. The system then adapts
the level via recombination and mutation, to minimize the
distance with the designer’s desired gameplay outcomes, using
the surrogate model to predict the evolving maps’ gameplay
properties. A thorough evaluation with a broad set of character
classes and target match durations shows that the generative
approach can improve the designer’s map to better match
the gameplay outcomes and better take advantage of specific
classes’ strengths and weaknesses.



II. RELATED WORK

Evaluation of game content has been a topic of broad
academic inquiry, e.g. via heuristics, constraints, or a com-
bination of the two. Game levels have often been parsed
in terms of their geometric or path properties to estimate a
modicum of balance between two or more competing players
[9]–[11]. These heuristics observe the level structure alone,
and are expected to be accurate only if the two players have
the same in-game characteristics (e.g. available units, tech
tree, or weapon power) and the same playstyle or skill. A
more objective way of assessing game balance is through
agent-based simulations or actual player traces. For the latter,
interactive evolution can be used indirectly to adapt a level
based e.g. on the combat time of a player [12]. For the former,
artificial agents have often been used in simulations to assess
each and every individual in the evolving population; this
approach is computationally expensive and forms the bottle-
neck in simulation-based evaluations for search-based PCG
[4]. Such agents are often simplistic (including those used in
this paper), but agents may use more general gameplaying
algorithms such as Monte-Carlo Tree Search [13] or may
have different goals depending on the play persona they are
trying to emulate [14]. Our proposed framework attempts to
alleviate the computational cost of extensive simulations by
using a model trained on a broad variety of level structures
and diverging in-game characteristics.

This paper explores how machine learning can be used for
procedural content generation as a surrogate model, indirectly
influencing the fitness function of a search-based PCG al-
gorithm [4]. So far, machine learned models are primarily
used to directly manipulate game content [15]. For instance,
neural networks have mostly been used to learn level patterns
which are then applied directly to the level. For example, a
recurrent neural network that predicts sequences of tiles is
used to create levels for Super Mario Bros. (Nintendo 1985)
in [16]; a convolutional neural network (CNN) is used to place
resources on a pre-made Starcraft II (Blizzard 2010) map [17].
Other work has used autoencoders to learn patterns in Super
Mario Bros. levels and use the encoding-decoding sequence to
repair broken segments [18]. Finally, CNNs have been used
to predict various characteristics of Super Mario Bros. levels
based on player annotations [19], but these networks were
not used for content generation. While machine learning has
a long history in procedural generation [15], the proposed
framework uses its learned model indirectly (i.e. to guide
evolution) rather than directly. More importantly, it is the
first attempt at using a model that has learned to combine
both game rules (in the form of class parameters) and level
properties for actual generation. The model combines three
different facets of games, i.e. game design, level design and
gameplay as discussed in [20]. The framework is thus the
first step towards game facet orchestration where all facets of
games are considered as a whole rather than e.g. considering
only the structural parts of the level [10] or the properties of
weapons [21] in a vacuum.

III. GAME FRAMEWORK

This paper uses first-person shooter (FPS) games as a use
case for mapping level structure and game parameters with
gameplay outcomes; it uses that mapping to generate levels
appropriate for a one versus one deathmatch game between
two players. The players are assumed to be on an equal skill
level, and each of them controls one avatar that belongs to
a specific character class. Character classes are common in
shooter games such as Team Fortress 2 (Valve 2007) and
have different gameplay styles and strategies, as well as a
different signature weapon. This paper uses the same character
class names and attributes from Team Fortress 2 (TF2) as a
benchmark for the level generator capabilities.

Deathmatch games are competitive: the player who score
more kills on their opponent(s) is the winner. A session in
a deathmatch game finishes usually after a specific time has
elapsed or a specific number of kills by one or both players.
The framework in this paper considers matches to be complete
when a total of 20 kills is scored; a time limit of 600 seconds
is also in place, but results from matches that timed out are
ignored. The game used for these experiments is implemented
in Unity 2017, a commercial game engine, and is based on an
existing toolkit1. The two competing players start the game in
opposite corners of a game level (described below).

A. Game Parameters
The character class of each avatar is represented by eight

parameters. Two of these parameters are specific to the charac-
ter, i.e. hit points and movement speed, while the other six are
characteristics of their weapon: damage (per shot), accuracy
(i.e. the size of the cone in which bullets are fired), rate of fire,
clip size, the number of bullets per shot and weapon range. As
noted earlier, the inspiration for the class parameters is from
the TF2 game; experiments in this paper use parameter values
from the game itself. The one addition to TF2 parameters was
that of range, to discern when AI agents should shoot.

B. Map properties
The maps in the game consist of a grid of 20 × 20 tiles,

which can have three degrees of elevation. The ground floor
and first floor are both traversable, while the second floor
is inaccessible and acts as a barrier. Each tile only has one
elevation (there are no tunnels or bridges). Players travel from
the ground floor to the first floor via stairs; they can go down
to the ground floor via stairs or drop off a ledge. An example
map is shown in Figure 1a, where the floors are indicated
in white, dark gray and black, and stairs between the ground
and the first floor in light gray. The spawn point of the first
player (P1) is always in the bottom left corner, while the
second player (P2) always spawns in the top right corner.
Furthermore, the maps can contain three types of pickups that
are common in shooter games: a healthpack (increases health
up to a maximum), armor (offers additional health which is
depleted first) and a damage boost (player’s bullets temporarily
deal double damage).

1http://opsive.com/assets/DeathmatchAIKit/



(a) 3D shooter level (b) CNN inputs

Fig. 1: A view of the in-game 3D level and its transformation
into CNN inputs. Orange and purple areas are the bases
of player 1 and 2 respectively. Red tiles are healing loca-
tions, blue and turquoise tiles are armor and double damage
powerups respectively.

IV. A SURROGATE MODEL OF GAMEPLAY

In order to learn a mapping between levels, game rules, and
the gameplay outcomes, a deep learning approach was used.
This Section describes the corpus used to learn patterns from,
the machine learning approaches and their performance.

A. Creating a Game Level Corpus

In order to provide a rich and expressive dataset to learn
patterns from, gameplay outcomes were collected from sim-
ulations between artificial agents playing through a broad set
of levels and character classes. Agents’ behavior is controlled
by behavior trees that were adapted from the original toolkit.

Agents played two matches in a unique combination of class
pairs (one character class per player) and levels: each agent
used the same character class twice, one starting from the
bottom left corner of the level and the other starting from the
top right corner of the level (orange and purple in Fig. 1). In
total, 105 levels and class pairs were generated, resulting in
2 · 105 data points regarding gameplay outcomes.

To generate a pair of character classes, 16 game parameters
(8 per player) were normalized to a predetermined value range
and a floating point value for each was randomly assigned;
range was chosen randomly between short, medium and long.

To generate the game levels, a constructive map generator
was implemented, using digging agents and generative gram-
mars [22]. The overall layout of the map is created in a lower
resolution representation (4 × 4 grid of cells), crafting two
paths between player bases: one on the upper side and one
on the lower side of the diagonal. Agents then operate on
each cell (which is 5 × 5 tiles in the final level) to connect
the cell to its adjacent ones. The “walls” that remain from
this process are transformed into first or second floor tiles
randomly; cellular automata then add more first floor tiles. The
algorithm places stairs on eligible tiles with a 20% probability.
Each unreachable first floor tile is transformed into a second
floor, in order to guarantee traversability of first floor tiles.

(a) Game Duration (b) Kill Ratio

Fig. 2: Distribution of gameplay outcomes in the corpus.

After the level architecture is created, each cell has a 33%
chance of having a pickup placed on a random tile within it.

Through the process described above, a dataset of 2 · 105
gameplay outcomes is created, out of which 6% are omitted
as the matches are not completed within the time limit. For
the remaining matches, the core gameplay outcomes that can
be learned is the kill ratio (KR) of one player (P1) to the total
kills, and the duration of the match in seconds. The distribution
of these two gameplay outcomes is shown in Fig. 2. There
is an almost uniform distribution between balanced matches
(KR of 0.5) and matches where P1 had a clear advantage
(KR near 1) or disadvantage (KR near 0). On the other hand,
duration is skewed towards values around 300 seconds, with
very few matches lasting below 200 seconds (2%) or over
500 seconds (4%). This may affect the accuracy of the deep
learning approach, as will be discussed in Section IV-D.

B. Data Input

Several steps are taken to process the data collected from
simulated matches in order for the machine learning approach
to read it. For gameplay outcomes (the intended outputs) the
kill ratio and duration are normalized to the [0, 1] range:
kill ratio is already normalized while duration is min-max
normalized. For character class parameters, all parameters are
min-max normalized in order to generate character classes for
the training set. For the game level, the grid of 20×20 tiles is
transformed into multiple channels using a variant of one-hot
encoding (see Fig. 1). In the channels that encode pickups,
a tile with a pickup and all its adjacent tiles are 1, except
second floor tiles. Pickups were given more prominence in
their respective channel due to their scarcity in the level and
their importance in gameplay.

C. Convolutional Neural Network Architecture

Following a broad set of preliminary experiments with
network architectures, activation functions and optimization
strategies, the network chosen for this task is similar to [23].
This CNN has two separate information streams, one for the
map and one for the pair of character classes. The level input
is passed through two blocks of convolution and max-pooling,
with 8 and 16 filters respectively. The convolutions are of size
3×3 (with zero-padding), and the end-result is a flat vector of
400 features for the level. The 16 parameters of the character
classes are passed to a single fully-connected layer of 8 nodes,



the output of which is concatenated to the flat feature vector
of the map. Finally, this combined feature vector is connected
to a single fully connected layer of 32 nodes which connects
to two outputs that predict the two gameplay outcomes (kill
ratio and duration). All nodes use a ReLU activation function.

D. Training Results

In order to validate the performance of our CNN archi-
tecture, baselines with several multi-layer perceptron models
(MLP) were tested, as well as a perceptron and linear regres-
sion (LR). For the sake of brevity, the performance of the best
MLP (with 128 neurons) is reported. Additionally, to assess
the importance of each input modality, the same models are
trained using only the character class parameters or only the
map as input by leaving the remaining inputs at a value of 0.
This paper focuses on a supervised regression task; the two
accepted performance criteria for such tasks are (a) the model’s
prediction error and (b) how much of the variance in the data is
explained by the model. The former is computed by the mean
absolute error, MAEt and MAEKR for duration and score
respectively. The latter is computed by the R2 metric (with
typical ranges of [0, 1]) for these dimensions (R2

t and R2
KR).

All models in this section were trained for 30 epochs, while
early stopping was used to prevent over-fitting. The results
reported are based on 10-fold cross-validation.

In general all baseline models perform very similarly, with a
maximum difference in error of 0.01 for both dimensions. All
baseline models can fairly accurately predict the kill ratio of P1
(MAEKR = 0.09) and, surprisingly, the CNN is only slightly
better (MAEKR = 0.07). Similarly, the explained variance is
fairly high with R2

KR values ranging from a minimum of 0.83
for LR to 0.91 for the CNN. This high accuracy even with
simple models can be explained by the significant Pearsson
correlations between score and 6 class parameters (out of 16).

In contrast, all models seem to struggle to predict game
duration. Although the error is quite similar to score prediction
(0.09≤MAEt≤0.10 for all models), the explained variance
is much lower. The perceptron and LR perform the worst
predictions (R2

t = 0.48), while both the MLP (R2
t = 0.55)

and CNN (R2
t = 0.57) are somewhat better. The low mean

squared error but low R2
t values is likely due to the skewed

distribution of duration in the training set (see Fig. 2b).
All in all, the CNN model can predict both kill ratio and

duration more accurately than baselines, although even simple
models such as the perceptron perform surprisingly well.

V. GENERATING LEVELS FOR SPECIFIC GAME OUTCOMES

Our main goal is to explore how the trained surrogate
model of Section IV can be used to generate a map with
a specific game duration and kill distribution for a matchup
between two character classes. To achieve this, a genetic
algorithm is used to generate levels targeting a fitness function
based on the outcomes of the surrogate model. The surrogate
model is exploited by using the evolving map (transformed
as per Section IV-B into readable input) and the character
classes (which are specified a priori and do not change), and

evaluating whether the gameplay output provided by the CNN
matches some designer-specified goals. The fitness for the
level is calculated based on the Euclidean distance between
the vector of kill ratio and duration provided by the CNN
and the designer-specified vector of intended kill ratio and
duration. Evolution attempts to minimize this fitness score.

Regarding the specifics of the genetic algorithm itself,
the level representation is based on tiles which contain all
relevant information (rather than individual channels used by
the CNN). Each tile is represented as a tuple of integers
describing the elevation (0 for ground floor, 1 and 2 for first
and second floor) and contents (e.g. stairs, healthpack, etc.).
The players’ bases are identical to the original training set (P1
has 5×5 tiles at the bottom left corner, similarly for P2 at the
top right corner) and evolution can not change those areas.

A new population is created by first selecting individuals
to reproduce. The fittest 10% of the population is copied
to the new population unchanged (elitism). The remaining
90% is chosen via tournament selection of size 5, and then
recombined and mutated. For the purposes of mutation and
recombination, the level (of 20 × 20 tiles) is divided into a
4×4 grid of cells. Each pair of individuals has a 20% chance
of producing offspring via recombination: recombination is
implemented by randomly picking a cell at that position from
either parent. Offspring and any unselected parents are then
susceptible to mutation. Every cell of every individual has a
10% chance of being mutated by one of the following variants:

• Move Pickup: If a cell contains one or more pickups, one
of these pickups is moved to a neighboring cell.

• Grow Cell: One of the following operators is chosen at
random: either all ground tiles that are adjacent to a 1st
floor tile transform into 1st floor tiles, or all 1st floor tiles
adjacent to a 2nd floor tile transform into 2nd floor tiles.

• Erode Cell: Opposite of Grow Cell, either 1st floor tiles
adjacent to ground tiles are transformed into ground tiles
or 2nd floor tiles adjacent to 1st floor tiles are transformed
into 1st floor tiles.

• Place Stairs: Adds a stair to a random ground floor tile
which is adjacent to only one first floor tile (remaining
adjacent tiles must be ground floor tiles).

• Place Block: A 3× 3 block of first floor tiles and a stair
is created if there is enough space on the ground floor.
Any pickups in this area are moved to the first floor.

• Dig Hole: Within a 5 × 5 block of first floor tiles, the
central 3× 3 first floor tiles are transformed into ground
tiles with a stair directed inwards. Any pickups in this
area are moved to the ground floor.

If a mutation is not applicable, (e.g. if a cell does not contain
pickups for the first variant), another variant is attempted until
either a mutation is applied or all mutation variants are tested.

After mutation and recombination, each map is analyzed
in terms of traversability in order to prevent infeasible maps.
The following constraints are enforced: (a) bases must always
be reachable via ground floor tiles, (b) each pickup must
be reachable, (c) each first floor tile must be connected to
at least one stair, (d) there must be no holes in an area



TABLE I: Trade-offs between character classes in this paper.

Class High Low
Heavy health, rate of fire speed, accuracy
Pyro damage accuracy
Scout speed health
Spy accuracy clip size
Sniper damage, accuracy rate of fire, clip size

of first floor tiles without a stair to climb out of the hole
and (e) a stair must always lead to a first floor. A naive
constructive algorithm repairs unreachable areas and stair
placements (without changing players’ bases).

VI. EXPERIMENT

Experiments in this paper target a set of gameplay outcomes
for specific matchups between two character classes. More-
over, to show how the algorithm can be used as a design tool
for human-authored designs, all evolutionary runs start from
a well-formed map and attempt to improve it. Details of this
seeding process are given in Section VI-A, while other seeds
are tested in Section VI-D.

In order to demonstrate the algorithm, a set of five diverse
classes was chosen from Team Fortress 2: Heavy, Pyro, Scout,
Spy, Sniper. The major trade-offs in terms of their class
parameters are shown in Table I. The Heavy, Pyro and Scout
all carry short ranged weapons; the Sniper carries a long
ranged weapon. The cloaking and knifing abilities of the spy
are ignored, treating it as a regular, medium ranged class.

Matching all character classes against each other results
in 25 matchup combinations (5 between avatars of the same
class). Three target match durations were selected to cover
the spectrum of possible game lengths: 200 seconds (short
duration), 300 seconds (medium duration) and 600 seconds
(long duration). Since the two agents have an equal skill level,
the target kill ratio (for P1) was set to 0.5 (i.e. balanced
kills). As mentioned above, the fitness function for evolution
is the Euclidean distance from both target gameplay outcomes.
Significance tests reported in the paper use α = 5%.

A. Starting Map

The initial population is seeded with the map shown in
Fig.1a: its central area is symmetrical as opposed to the edges.
The map has four healthpacks on a diagonal between the two
bases and two damage boosts on the first floor at the center
of the map. P1 (orange) spawns near a damage boost and P2
(purple) spawns near armor.

Based on simulations on the initial map (as part of the
ground truth evaluations discussed in section VI-C), the
matches on this map on average last for 266 seconds, but
can be as short as 203 seconds (Heavy versus Sniper) and as
long as 484 seconds (Heavy versus Heavy). The map is most
suitable for Snipers and least suitable for Heavies, judging
by their average kill ratio against other classes. This explains
the short duration of the Sniper versus Heavy matchup, which
ends in a hands-down defeat for the Heavy which manages a
kill ratio of 0.2 (the worst in all matchups). All matches seem
to give a slight advantage to P1 regardless of their class.

B. General Performance
Each class matchup (out of 25) and intended duration (out

of 3) is provided as input and intended output respectively and
the genetic algorithm attempts to improve the human-authored
level in 20 independent runs. Results in this section examine
the fittest evolved levels at the end of each evolutionary run,
after a maximum of 100 generations (although early stopping
is possible). In all cases, the initial population consists of 20
copies of the human authored map of Fig. 1. Unless explicitly
noted, all metrics are calculated from the average of these 20
independent runs per matchup and intended duration.

Based on the surrogate model’s predictions, the Euclidean
distance from the target balance and playtime decrease over the
course of evolution, dropping to an average of 0.19 from 0.42
in the initial map. As expected, evolution is more challenging
for the longer durations which are rarely seen in the training
set: there, the average distance using predicted values is 0.35.
The easiest duration to predict is the medium duration, which
is very common among matches in the training set and the
average distance using predicted values is 0.09. However, these
distances could be low because the model has been over-
fitting to a skewed training set towards 300 seconds. To verify
whether the predictions are reflected in actual gameplay traces,
the ground truth in terms of gameplay outcomes is calculated
via simulations as described in Section VI-C.

C. Improvements over the initial map
For the purposes of grounding, the best evolved maps for

each run (i.e. 20 maps per class pairing and intended duration)
were simulated using the agents on which the model was
trained. Each map was simulated 10 times to account for the
stochasticity of the AI, and gameplay outcomes (kill ratio,
duration) are averaged from those 10 simulations (ground
truth or GT). The different ground truth, predicted, and initial
values per matchup are shown in Fig. 3. Two key performance
metrics will be used to compare the evolved maps to the
initial map, and to assess the prediction accuracy of the model.
We measure prediction discrepancy based on Eq. (1), i.e. the
difference in the Euclidean distance between intended and
predicted values and Euclidean distance between intended and
GT values. We measure improvements from the initial map
based on the difference in the Euclidean distance between the
initial map’s GT values and intended ones and the Euclidean
distance between final map’s GT values and intended ones,
normalized to the former to give a ratio. This performance
metric, formulated in Eq. (2), is positive if the evolved map
actually approaches the intended gameplay properties in one
or both dimensions compared to the initial map and negative
if it actually is more distant than what the designer intended.

P (m) = |(dist(mpred,mi)− dist(mgt,mi)| (1)

O(m) =
dist(m0,mi)− dist(mgt,mi)

dist(m0,mi)
(2)

where m is the generated map being assessed; dist(x, y) =√
(KR(x)−KR(y))2 + (d(x)− d(y))2 is the Euclidean dis-

tance between parameter vectors x and y; KR(x) and d(x) is



(b) Short duration (c) Medium duration (d) Long duration

Fig. 3: The feature values of the designer’s intent, the initial map, the model’s predictions, and the ground truth of the evolved
maps. Top row: game duration, bottom row: kill ratio. The data is split along the 25 matchups, ordered alphabetically.

Duration O P
Short -10%±18% 0.14±0.03
Medium 7%±7% 0.13±0.03
Long 28%±4% 0.23±0.05
Average 8%±7% 0.16±0.02

TABLE II: Improvement over initial map and prediction
discrepancy. Values are averaged across all 25 matchups, along
with their 95% confidence interval.

the kill ratio and the duration (respectively) in the parameter
vector x; mgt and mpred is the gameplay parameter vector
based on GT and CNN prediction respectively; m0 is the GT
parameters for the initial map of Fig. 1; and mi is the intended
gameplay parameter vector specified a priori by the designer.

Observing the improvement of maps evolved for medium
and short duration (see Table II), we note some mixed results.
On the one hand, maps evolved for medium duration show a
minor improvement over the initial map, while maps evolved
for short duration often have negative improvements (i.e.
moving away from the desired values). It is important to
note that for short durations specifically, more matchups have
negative improvements (14) than positive (10). Many negative
improvements were also observed for medium duration (7),
but not more than positive (14). When evolving for long
duration, on the other hand, evolution was far more successful
in improving the maps compared to the initial state. A likely
reason for this discrepancy between short and long durations
is because the initial map was mostly favoring short or
medium durations than long durations; improving towards
short durations was therefore more challenging for evolution.

Although maps for long durations were always improved
over the initial map (in all 25 matchups), the model over-
estimated the predicted improvements; the high P value for
long durations is primarily due to the fact that most matches
in truth took less time than what was predicted. Similarly,
for short durations the model overestimated how short the
duration would be (see Fig. 3). This is somewhat expected
from a regression model (especially one with a worse R2

t

than R2
KR), but it should be noted that in the majority of

matchups the ground truth durations for maps evolved for short

durations were shorter than those evolved for medium (16 of
25 matchups) and maps evolved for long durations were longer
than those evolved for medium (25 out of 25 matchups).

It is interesting to note that different class matchups have
different performances across intended durations. The matchup
with the highest improvement was Scout versus Scout for
short durations (42% improvement), Sniper versus Sniper for
medium durations (38% improvement), and Heavy versus
Heavy for long durations (63% improvement). It is worthwhile
to note that the matchups with the highest improvements were
predominantly symmetrical (both players have the same class).

D. Performance with Different Initial Seeds

In order to test the generality of surrogate-based level
generation, the same generation methods were applied using
a broader range of levels as initial seeds. Unlike the in-depth
assessment of the hand-crafted level of Fig. 1, a high-level
analysis is provided using P of Eq. (1) and O of Eq. (2) as
performance metrics. Ten game levels are used, each of which
acts as an initial seed for 75 evolutionary runs: one run for
each of 25 Team Fortress 2 class matchups and each of three
intended durations (short, medium, long). The ten levels are
shown in Fig. 4: the first 5 levels are created by the same
level generator used to produce the corpus, having similar but
not identical patterns to levels on which the CNN model was
trained on. The last 5 levels were created by a human designer,
featuring a degree of symmetry and explicit level patterns such
as arenas, choke points and flanking routes [8].

Results averaged across all maps of Fig. 4 for both per-
formance metrics are shown in Table III. Results show some
similar trends from Table II, and some differences. On the
one hand, due to the large number of initial maps being
tested, improvements were highly varied. Each initial map
had a different duration and balance per class matchup and
thus its improvements could be minor or negative. With
generated levels as initial seeds, in particular, many matches
had durations very close to the intended medium duration
(causing the negative O values). It is not surprising that
generated levels generally had match durations close to 300
seconds, as evidenced by the distribution in Fig. 2a. Despite



(1) G1 (b) G2 (c) G3 (d) G4 (e) G5 (f) D1 (g) D2 (h) D3 (i) D4 (j) D5

(k) Scout vs
Heavy (M),
O = 74%

(l) Heavy vs
Heavy (M),
O = 89%

(m) Spy vs
Spy (L), O =
88%

(n) Spy vs
Pyro (L), O =
100%

(o) Heavy
vs Scout (M),
O = 93%

(p) Heavy vs
Spy (L), O =
96%

(q) Scout vs
Pyro (L), O =
93%

(r) Pyro vs
Scout (L),
O = 100%

(s) Scout vs
Scout (M),
O = 81%

(t) Spy vs
Spy (M), O =
95%

Fig. 4: Additional levels used as initial seeds for testing the generality of the method (top) and best evolved maps in terms of
improvement (O), based on each initial map (bottom). Intended durations are shown as M (medium) and L (long).

Maps Generated Designed All
Duration O (improvements from the initial map)
Short 13%±6% 24%±6% 19%±5%
Medium -31%±47% 10%±24% -11%±26%
Long 37%±5% 32%±6% 35%±4%
Average 6%±16% 22%±8% 14%±9%
Duration P (prediction discrepancy)
Short 0.13 ±0.02 0.16 ±0.02 0.15 ±0.02
Medium 0.14 ±0.02 0.15 ±0.02 0.15 ±0.02
Long 0.13 ±0.02 0.18 ±0.03 0.16 ±0.02
Average 0.13 ±0.01 0.17 ±0.01 0.15 ±0.01

TABLE III: Performance metrics averaged across 5 or 10 maps
of Fig. 4 and their 95% confidence intervals.

a few extremely negative O values, in almost all cases the
positive improvements were more than the negative ones per
initial level and duration individually, and on average2. The
only exception is for the 25 levels evolved for short duration
based on G2 (9 positive versus 16 negative improvements). In
terms of predictions, it is not surprising that using a designed
level as an initial seed is more challenging than using a
generated one (with slightly higher P values across durations)
since generated levels have patterns closer to those learned by
the CNN model. However, when averaging P values across
the many evolutionary runs the differences between intended
durations are less pronounced.

Fig. 4 also shows a sample of the evolved levels for a
specific class pair and match duration. The evolved map with
the best overall improvement (O) is shown, but it is interesting
to note that not all maps are much changed from their initial
states. In many cases, there are minor architectural differences
while most changes are focused on the number and type of
powerups (e.g. Fig. 4t and 4p). In other cases the powerups
largely remain the same, but entire pathways are blocked off
(Fig. 4o and 4q) or balconies or galleries introduced (Fig. 4o).

2There are 185 positive versus 63 negative in short matches, 173 versus 74
in medium matches, 222 versus 22 in long matches

VII. DISCUSSION

Based on the training results of Section IV-D, it is evident
that the surrogate model is able to learn several interrelations
between level and class parameters. However, the biased
distribution of durations in the training corpus is evidently
hampering the network’s ability to accurately predict values
outside the medium durations around 300 seconds; this is
corroborated by the lower R2

t value. This lack of precision in
predictions affects the performance of the genetic algorithm
in non-medium durations, as evidenced by higher P values
in most instances of Table II and III. Results are still fairly
consistent: most evolved maps have an actual shorter duration
when evolving for a short duration than when evolving for a
medium or long duration and vice versa. Future work should
attempt to create a more fairly distributed dataset in terms of
duration. Another notable improvement would be prematurely
ending evolution when fitness consistently decreases compared
to the initial map. In experiments of Section VI-D, the initial
seed matched the intended balance and duration almost per-
fectly, and therefore evolution explored away from that (due
to random mutations in 100 generations). Stopping evolution
when maps can not be improved further would enhance results.

It is difficult to ascertain to which degree the inaccuracy
of the model has led evolution away from more promising
maps than the tested ones, i.e., whether it converged to a false
optimum provided by the surrogate model [24]. An important
strength of the surrogate model is its speed when it replaces
simulation-based evaluations. Indicatively, one evolutionary
run as described in Section VI lasts for 3.5 minutes on a
12-core Intel i7 processing unit; a single simulated match
(optimized to run without graphics) lasts for 50 seconds on
the same machine. If we use the mean gameplay metrics
from 10 simulations for each class pairing to account for
stochasticity (as used to calculate the ground truth in Section
VI-C), one evolutionary run with 20 individuals evolving
for 100 generations would last 12 days; even with a single
simulation per individual one run lasts 1.2 days. This large
computational overhead renders testing the surrogate model



against a pure simulation-based model unrealistic.
It should be noted that the convolutional network has been

trained on synthetic playtraces, which may not always match
human decision-making. Notable discrepancies when agents
navigated the map of Fig. 1 was the fact that P2 rarely
exploited the armor pickups of the right side of the map, which
was intended as a safe hiding spot. Tactically, therefore, agents
do not behave like human players do. While relying on human
playthroughs for the vast data required to train deep learning
models is not realistic, actual player traces from some of the
promising levels can be used to fine-tune the current model.

The results of the experiments point to several possible
directions for future work. First, discrepancy between predic-
tion and ground truth values may require a more involved
re-training process (with a better duration distribution and
possibly human traces, as discussed above). Alternatively,
we can re-introduce simulation-based evaluations when the
predictive model deems that a map has sufficient quality
that a more precise assessment of the gameplay outcomes
(via simulations) is warranted. There are various strategies
for combining simulation-based evaluations with a surrogate
model, such as individual-based, generation-based or adaptive
evolution control [7]. Finally, the evaluation could move away
from the Euclidean distance which combines both gameplay
outcomes (and treats them as equivalent) and use a multi-
objective approach [25], treating distance from intended du-
ration and distance from intended kill ratio as individual –
possibly conflicting– objectives. The generator might leave this
trade-off between fidelity to intended duration and fidelity to
game balance up to the designer by presenting the Pareto front
(and accompanying maps) to a user for manual selection.

VIII. CONCLUSION

This paper demonstrated how deep learning and evolution-
ary computation could be combined for the purposes of a
generative algorithm. The neural network can process game
levels as an image and game properties as a parameter vector
and predict two core gameplay outcomes. These gameplay
predictions can then drive the evolutionary adaptation of game
levels towards specific outcomes. Focusing on the domain
of shooter games, the model is able to learn the majority
of patterns between levels and character classes playing in
them. The interrelations between levels, class parameters and
gameplay outcomes are then exploited to generate new shooter
levels which target a balanced gameplay of short, medium, or
long duration for a specific pairing of character classes. Future
work could exploit the learned mappings among dissimilar
facets to generate content of different types (e.g. character
classes), generate multiple types of content simultaneously or
as a real-time co-creator for a human level designer.
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